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i) Introduction générale

La physique mésoscopique est un sujet trés actuel de par son intérét, et est en pleine
expansion. Les effets quantiques sur des objets macroscopiques sont trés spectaculaires. Par ces
recherches on essaie de comprendre la transition entre la physique quantique et la physique
classique. Ces études sont liées a la question : « Comment changent les lois de la physique d’un
régime classique & un régime quantique en fonction de la taille d’un objet» ? Un des sujets trés
dynamiques de ces derniéres années est la recherche de retourncment d’aimantation par effet
tunnel quantique (quantum tunneling of the magnetization, qtm). D’une fagon classique, un
vecteur d’aimantation ou un spin géant peut franchir une barriére d’énergic seulement s’il possede
assez, d’énergie pour passer au-dessus de la barricre. L’effet quantique permet le retournement
d’orientation par-dessus la barriére, méme si I'énergie est nulle.

En effet, le comportement d’un systéme mésoscopique est un mélange d’effets classiques
et quantiques. L’intérét de ces études de physique fondamentale est de faire le lien entre le
domaine classique de magnétisme en volume (bulk) et le domaine quantique du magnétisme
atomique. De plus il peut y avoir des impacts sur la technique. La miniaturisation d’éléments
électroniques et de stockage a fait par exemple, que ces 30 derniéres années le prix de stockage
d’un Mega-octet est passé de 100 000 FF & 5 FF et la taille par bit a diminué d’un facteur 107,
Aujourd’hui les dispositifs de stockage d’informations et les autres ¢léments électroniques sont
encore de dimensions macroscopiques et contiennent des millions d’atomes. La décroissance de la
taille de ces dispositifs est exponentielle et dans le futur, peut étre dans 20 ou 30 ans, elle
approchera un niveau atomique. A cette échelle Peffet quantique devient important et le
comportement physique va changer radicalement. Les ¢tudes sur les matériaux magnétiques
nanoscopiques peuvent donc étre importantes pour I’avenir de la technique de stockage.

Etat de lart

La premiére interprétation d’une expérience par un effet tunnel quantique d’aimantation a
été faite dans les années 50 par Livingston et Bean, mais aucun intérét théorique n’est apparu a
cette époque. Il y a 20 ans environ, Leggett et Caldeira ont fondé la théorie les effets de
dissipation sur la physique quantique. La théorie d’effet tunnel quantique d’aimantation a €té
développée en détail par van Hemmen, Stit6 et Schillingil y a 12 ans. 11 est étonnant que ce sujet
ait été abordé seulement plus de 50 ans aprés I’effet tunnel quantique sur des particules
¢lémentaires.

L’intérét expérimental se renouvela vers 1980 par [étude de petites particules
ferromagnétiques et mono-domaines. Le probléme était qu'une seule particule mono-domaine €tait
trop petite (~100A et moins) pour pouvoir étre mesurée a cette époque. De ce fait, on a étudié
des poudres de particules nanoscopiques. Il est devenu rapidement certain que les distributions en
tailles et orientations donnent des effets importants et empéchent une interprétation exacie. Un
des probiémes est qu’une distribution de la taille et de I’orientation générent des comportements
qui ressemble beaucoup a de 1’effet tunnel quantique. A basse température, le temps de relaxation
devient dans les deux cas indépendant de la température, mais pour des raisons différentes. La




distribution de la taille des particules dorme également une distribution des hauteurs de barridre
dans ce systéme. Il s’agit donc d’un systéme mal défini,

Une autre approche réside dans 1’étude d’aimants moléculaires. Ces matériaux sont
composes de molécules magnétiques entourées par une matrice organique non magnétique. Un des
avantages est que les unités magnétiques, les molécules, sont toutes identiques et possédent la
méme orientation. Donc il n’y a plus les problémes de distribution. Un premier succes sur ce sujet
fut obtenu lors de études effectuées sur échantillon Mn12ac. 11 y avait de fortes présomptions
que cet échantillon présente un effet tunnel quantique a basse température, mais avec un temps de
relaxation de 7= 10° sec, c’est-a-dire de 3 années. Un autre indice était ’apparition d’un effet
résonant en fonction d’un champ externe a haute température. Cet effet fut interprété comme la
signature de croisements des niveaux d’énergie d’une molécule. Dans cette gamme de température
il présente un temps de relaxation bien plus court que dans le régime quaniique. 11 s’agit donc d’un
mélange d’effets thermique et quantique.

Nos premiéres mesures du composé Fe8 ont été effectudes sur un échantillon de poudre.
Nous avons observé que ce systtme montre des effets tunnels (quantiques & trés basse
température. C’était pour la premiére fois une preuve directe quun aimant moléculaire peut
presenter un effet quantique. Dans le régime quantique le temps de relaxation est T = 10* sec,
c’est-a-dire environ 3 heures. Méme si I'effet tunnel quantique était clairement montré, il restait
quelques problémes d’interprétation des données expérimentales :

— Les courbes de relaxation ont une forme d’exponentielle étirée aux basses températures

malgré les interactions trés faibles entre les molécules. '
— Le temps de relaxation mesuré est 10000 fois plus grand que les prédictions théoriques.
— La largeur de la résonance mesurée est également plus grande que prévu, de plusieurs

ordres de grandeur.
Ensuite, les chimistes ont réussi a synthétiser de grands monocristaux de Fe8. Nous avons
effectué de nouvelles les mesures sur de tels cristaux et trouvé presque les mémes résultats que
sur la poudre. Nous pouvons donc dans cette dernier exclure des effets de distribution.

Nous avons pu résoudre les contradictions ci-dessus en prenant en compte des
interactions dipolaires entre des molécules. Méme si ces interactions sont trés faibles, elles ont
une influence trés forte sur les effets de relaxation.



ii) Macroscopic Quantum Tunneling of Magnetization

Tunneling effects through an energy barrier are a siriking manifestation of quantum
mechanics without any equivalent in classical physics. Tunneling of objects on an atomic scale
have been known for a long time and well studied (e.g. o—decay (Helium nucleus), Josephson
effect (Cooper pairs). Quantum mechanically the tunneling probability p, is given by
p, = poexp(—B) with B the Gamov factor, e.g. for a large step barrier of a height U and of
thickness « this factor is B o av/U — E where E < U is the energy of the particle. As the object
becomes bigger and the energy barrier larger (U or @) the tunneling probability decreases
exponentially and a tunneling event becomes extremely rare. In a macroscopic system tunneling is
completely suppressed due to decoherence effects. The occurrence of decoherence on larger scales
is not fully understood even today. On an intermediate scale, often addressed as the mesoscopic
scale, quantum effects might occur even though the system is large compared to the microscopic
scale.
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Figure ii.1: Schematic picture of atunneling process. A particle of energy Etunnels through a barrier of height &/ and
thickness a. The probability distribution |¥|* of the particle’s wave function has a finite probability density on the
opposite side of the barrier.

The systems we are studying are situated in this regime. We search for a quantum effect,
tunneling, of a classical variable, the magnetization vector. Tunneling of the magnetization has,
besides the scale effect, some special features when compared to the tunneling of particles. The
tunneling of a particle is described by a continuous variable, namely 7 = (%,%,2) the particle
position in an infinite-dimensional Hilbert space which has a vanishing commutator between their
operators ([%,7]=Oetc.). On the other hand a spin is discrete variable &=(6,,6,,6,) with
&, = hs?, and s integer or half-integer and 7, the Pauli matrices. A spin is a vector in a finite
Hilbert space of dimension 2s+1 and has a cyclic commutator between their components
[6..6,] = 2i6, ete.

Surprisingly theoretical studies of spin tunneling started more than 50 years after establishment
of the quantum mechanical theory of tunneling for particles.




Figure ii.2: In a magnetic system a change in the spin orientation can be though as smooth change in the angle,

In the systems we are studying the variable is the combined spin of a small magnetic
molecules. The spins of the individual ions within the molecules are tightly locked up (due to
strong internal exchangecouplings) and at low temperature the molecule appears as having one
singlenet spin. Sucha system whose spin degreesof freedom are reduced toone degree is called a
giant spin system. Often is an directional anisotropy associated with a giant spin. If the giant spin
is turning, as depicted in figure[ii.2], the system is passing an energy barrier.

Mapping this spin system on a particle picture we imagine the anisotropy barrier as a
function of the orientation angle® and an energy barrier betweenthe orientations 0 = 0 “spin up”
and 8 =7 “spin down” as depicted in figure[ii.3]. The anisotropy potential looks like a two well
potential. The two states “up” and “down” are states of minimum energy with a separating
energy barrier betweenthem. To overcomethis barrier the spin must either have enough energy to
jump over the barrier, the classical path, or it might tunnel through the energy barrier.

Thermal
activation

"spin up” . O "spin down”
0 v

Figure ii.3: A spin flip corresponds to a transition of the orientation from an angle 0 to . The path can be classical,
. L.e. over the barrierby thermal activation, or quantum mechanical via tunneling through the barrier,

4



For the classical path the energy to jump across the barrier comes from thermal activation.
Thus the spin is interacts with the phonons of the system. Assume all the (giant) spins in the
sample are first placed in the left minimum, “spin up”-orientation, i.e. after saturating in a large
enough field. Then the spin system is not in equilibrium according to Boltzmann distribution
p = p,exp(—A/kT) where A is the height of the energy barrier and 7 the temperature. Some spins

will at some time have enough energy to overcome the barrier and will flip. Until after some time
the thermal equilibrium will be established.

For a tunneling process to occur a transverse anisotropy as function of the azimuth angle ¢
must be present. This corresponds to a variation of a potential along the equator in figure [ii.2].
This transverse term breaks the z-symmetry of the system and the z-component of the spin is no
longer a good quantum number and the spin might tunnel.

A classical system, say the magnetization of a bulk sample, will never shows tunneling
effects. This is not simply due to the fact that the anisotropy might be very high and
consequently the tunneling time astronomically large. In a macroscopic system strong
decoherence effects suppress any quantum mechanical effects. If we reduce the size and
especially the temperature, the decoherence effects will decrease and in a certain range, quantum
effects may be present even though the system may be still quite large. By reducing the size
further, we approach a mircoscopic level and expect the system to obey only the laws of
quantum mechanics. Our main interest is on a system between the border of a pure classical
regime and a quantum regime. Leaving aside the problem of decoherence which is strongly related
to the temperature and the nature of the interactions in the system, we might still ask to what
degree we can call a system “macroscopic”, even assuming that quantum tunneling might occur.
One criterion is certainly the nature of the energy levels. If the energy levels are continuous we
might call the system “macroscopic” while if the levels are discrete with a sizable energy spacing
the system is at least on a “mesoscopic” scale if not “microscopic”. In this context we might
distinguish between systems where quantum tunneling is possible but the energy levels are
continuous and a system where the energy spacing between the levels become important. The
first case we call “Macroscopic Quantum Tunneling” (MQT) while in the latter case we prefer
to call the quantum effect “quantum tunneling of the magnetization” (qtm), see figure [i.4].

A system with continuous energy levels must have a rather large spin say of the order of
at least S~ 10* or even larger. Such a large spin can be only found in magnetic nano-particles of
the order of say 10 — 100A. So far the search for MQT in a single particle was not successful. On
problem is that the signal of these particles are far too small to be measured by current
magnetometers. One approach of measuring nano-particles of this size was done by [Wernstorfer
96] using a microSQUID system. Up to today no unambiguous proof of MQT in these system
could be given. A similar approach is to use a powder of nano-particles. This way the integrated
signal over many nano-particles is large enough to be measured by standard magnetometers. An
inevitable problem is the distribution of size and orientation in these kinds of samples. These
distribution effects result in a large distribution of relaxation times and effective relaxation time of
the sample appears to be temperature independent even in the low temperature range thus
showing the same effect as expected for the occurrence of quantum tunneling [Sampaio 94]. In
consequence give this approach misleading results that might easily misinterpreted.




MQT gtm

Figure ii.4: In a large system the energy levels will form.a continuum. In this case we can talk of Macroscopic
Quantum Tunneling, MQT. In a smaller mesoscopic system the encrgy levels are well separated. We will call a
tunneling process in such a system quantum tunneling of the magnetization, qtm.

A further approach in the search of quantum effects of the magnetization is the use of
molecular magnets. These materials consist of nano-sized magnetic molecules of transition jons
embedded in a non-magneticorganiccrystal. This approach eliminatesall distribution effects since
the magnetic moleculesare all identical and due to the embedding crystal all are iso-orientated. A
few years before this thesis a first molecular magnet, Mnl2ac, has been identified showing
quantum effects. During this thesis we identified a second sample, Fe8, which is more
appropriate for this kind of studies. Both systems consist of magnetic molecules with a net spin
0f §=10. For both systems the anisotropy and the energy levels are looking as depicted in figure
[11.5]. This figure shows the energy level splitting of the states IS, m>  with
m=+10,+9, .., -9, -10. At higher temperatures the spin might overcome the encrgy barrier by
interacting with phonons via thermal activation. At lower temperatures the quantum tunneling
occurs between degenerate states, as shown in the figure from m=+10 to m=-10. One
shortcoming is the rather small spin of 10. These spins cannot be claimed to be macroscopic but
rather mesoscopic. Due to the moderate spin the energy levels are well separated by an energy of
some Kelvin. For example is the level distance between the lowest lying states m =+10 and
m =19 for Fe8 of the order of 4.6K and for Mnl12ac of the order of 11.6K. Though the energy
level distance is smaller for higherstates in the quantum regime, i.e. at very low temperature, only
the lowest lying states are occupied. A consequence is a resonance effect as function of the
magneticfield. A magnetic field acting on the spins will shift the states via the Zeemann energy.
Since tunneling is only permitted if the initial and the final state are degenerate up to the tunnel
splitting a largerenergy shift will lift the energy degencray and suppress tunneling.



/—\ thermal activation
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Figure ii.5: Energy levels of amolecule with a net spin of $=10. At low temperatures the spin might tunne! back
and forth between thestates » = +10 and m = —10. At higher temperatures the spin might interact with a phonon
and gain enough energy to overcome the barrier.

The major problem in the experiments with Mn12ac is the prohibitive long relaxation time
at low temperatures. Below 2K the relaxation time of Mn12ac is of the order of 10% sec (1), ie.
about 3 years. In a relaxation cxperiment the magnetization will only change by a few percent
even after weeks of experimentation. Such data are difficult to interpret and demand an extreme
drift stability of the experiment. Fe8 has a relaxationof 10* sec even at the lowest temperatures of
the experiment. Suchrelaxationtimes are much more appropriate for the study of quantum effects
at low temperatures, see figure[ii.6].

We can conclude that our approach of molecular magnetism is appealing and has many
advantages over other approaches to study quantum tunneling in magnetic materials, as
nanoscopic powders or large mono-domain particles. Nonetheless are still many questions
unsolved. The effective relaxation as measured in the experiments is much slower than the
theoretical expected tunneling rate for an isolated molecule. During the thesis we found evidence
that the mutual dipole interaction between the molecule strongly influencethe relaxationbehavior.
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Figure ii.6: Relaxation times 7 as function of the inverse temperature I/7. Mnl2ac and Fe8 show a crossover from a
thermal activated regime at high temperaturesto a quantum regime at low temperatures where the relaxation time is
temperature independent. At low temperature the relaxation time of Mn12ac is of the order of 3 years (~10° sec!) and
prohibitive large forany experimentation,



iii) Organisation de la thése

Cette thése se devise en trois parties. Dans la premiére partie, qui comprend trois
chapitres, nous décrivons en premier lieu les dispositifs expérimentaux et les méthodes de
mesures utilisés (chapitre I). Ensuite (chapitre IT), nous présentons les théories récentes de I’effet
tunnel quantique, tandis qu’au chapitre III nous domnons les caractéristiques du principal
échantillon qui nous avons étudié : Fe8. Dans la deuxiéme partie, chapitre IV, nous présentons
nos résultats expérimentaux sur Fe8, mais aussi sur d’autres aimants moléculaires. Chacun d’eux
se comporte comme un systéme superparamagnétique, mais seul Fe® présente un effet tunnel
quantique. Nous constatons des différences entre la théorie de 1’effet tunnel quantique & un spin et
les expériences. Dans la derniére partie (chapitre V) nous discutons I'influence des champs
dipolaires sur la relaxation, ce qui explique bien les différences mentionnées ci-dessus. Nous
présentons des calculs numériques et analytiques et nous les comparons avec nos mesures. En
résumé nous trouvons des évidences claires que les champs dipolaires gerent la relaxation dans le
systéme a effet tunnel quantique Fe8.

La plus grande partie de cette thése a écrite dans la lingua franca de physique, 'anglais.
Nous pensons que cela permettra aux chercheurs de la communauté internationale qui travaillent
sur le sujet, mais peu familiers avec la langue frangaise, de prendre connaissance de ceux de nos
résultats qui sont encore préliminaires, et de détails techniques quelquefois cruciaux, que nous
n’avons pu faire figurer dans nos publications actuelles.
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Chapitre I

Techniques Expérimentales

L1) Le Magnétometre 13
1.2) Le Réfrigérateur a Dilution 19
I.3) La Technologie de SQUID 21

Dans ce chapitre nous présentons le dispositif que nous avons utilisé pour les
expériences. Nous donnons une introduction bréve sur le fonctionnement d’un réfrigérateur a
dilution et ensuite nous discutons le principe d’un SQUID. En particulier nous expliquons de
maniére trés détaillé 1a technique d’un SQUID avec hystérésis.

Pendant la thése nous avons réalisé des mesures d’aimantation de haute sensibilit€ a
basse température, en champ fort ou en champ alternatif. Nous avions & notre disposition trois
magnétometres. Ils sont tous capables descendre a basse température vers 100 mK ou 50 mK
en utilisant un réfrigérateur & dilution et exploitent la technique de SQUID pour les mesures
d’aimantation. Ces magnétométres ont été construits au cours des derniéres années au
CRTBT-CNRS & Grenoble. Tous leurs détails de construction sont connus et permettent une
grande liberté d’utilisation. Nous pouvons changer facilement chaque dispositif pour exécuter
une grande variété d’expériences.

Deux magnétométres sont d’un principe comparable : 1l s’agit d’une canne a dilution
placée dans un bain de *He liquide. Un magnétométre est optimisé pour des mesures en
champ fort jusqu’a 8 tesla et I’autre est optimisé pour des mesures en champ alternatif.
L>échantillon est placé sur un porte-échantillon de cuivre en contact avec la boite a mélange.
Le systéme de bobinage et le SQUID se trouvent a I’extérieur du réfrigérateur a dilution dans
le bain d’hélium. Les deux magnétometres ont une sensibilité proche du 107 uem.

Le troisiéme magnétométre, nommé microSQUID, est réalise selon un principe
différent. Le cryostat est de type SionLuDi sans bain d’hélium. A I’intérieur le SQUID, ainsi
que I’échantillon et le systéme de bobinage se trouvent dans le vide. La thermalisation jusqu’a
42K est faite par une cascade d’écrans thermalisés par une circulation permanente d’hélium
liquide. I.’échantillon est placé directement sur un SQUID lithographique qui présente une
hystérésis. Le systéme de contre-réaction est gére par un logiciel. Ce microSQUID permet de
mesurer I’aimantation avec un balayage de champ a grande vitesse. Nous avons exploité ce
magnétométre surtout pour les mesures d’hystérésis.
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L1) The Magnetometer

The magnetic measurements where made on three different magnetometers all
developed at the CRTBT in Grenoble. All three systems are equipped with a dilution
refrigerator and can operate down to temperatures of 50 - 100mK. The signal detection is
made using SQUID-technology. Since all magnetometers are constructed and build at the
CRTBT they are extremely flexible in their use. They can easily be changed for any kind of
measurement.

Features of the magnetometers: A
1) High field SQUID-magnetometer: Magnetometer equipped with a superconducting coil
that can produce magnetic fields up to 8.5 tesla. The system uses a miniature dilution
refrigerator (“canne & dilution”) that can operate down to 70mK and has a commercial
DC-SQUID system. The extraction method is used to obtain measurements in absolute
units.

2) AC-field SQUID-magnetometer: This magnetometer is optimized for low field and ac-
field measurements. The coil system can produce magnetic fields of about Hae <5 Oe,
Hye < 200 Oe. This system is equipped with the same miniature dilution refrigerator as 1)
but the detection system uses a RF-SQUID. This system also uses the exiraction method
to obtain absolute values of the signal.

3) MicroSQUID system: This system uses lithographic, hysteretic SQUIDs for the
measurements. The magnetic field can be changed more rapid than in the other two
system but unfortunately only relative measurements can be done. The coil system has 3
coils. Two coils in the x- and y-direction that can produce fields of the order of 7 kOe and
one smaller coil in the z-direction that is only used for the feedback. For the cooling a
dilution refrigerator of the type “SionLuDi” is used. This system can operate down to
100mK but due to heating effects of the hysteretic SQUID measurements are only
possible down to about 200mK.

SQUID-magnetometer

The schematic setup of the high-field SQUID-magnetometer is shown in figure [1.1.1].
The AC-field SQUID-magnetometer is very similar to this system except the superconducting
coil and some differences in the control electronics. The low temperature part can be seen on
the left hand side of the picture. It consists of a "canne a dilution" that is placed in a liquid
helium bath. An important detail is the extractor motor at its top that allows to move the
whole dilution refrigerator including the sample while the coils system is fixed. On the right
hand side are the electronic components of the analog and digital control units. The whole
measurement is controlled by a HP9816 computer. This computer is also responsible for the
data acquisition during an experiment. For the further data analyses and storage the data are
regularly transferred to a Macintosh computer.

The temperature is controlled by an ORPX system with an independent Epson
computer. This unit reads the actual temperature from the thermometers and regulates the
temperature by a heater on the sample holder. The regulation is done by a PID-control
algorithm (Proportional, Integrated, and Derivative). The applied heating power results from
the absolute temperature difference between the actual value and the target value
(proportional), the recent change in the temperature

13
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Figure L1.1: Scheme of the high-field SQUID magnetometer.
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(derivative), and the recent summed up heat amount (integrated). The Epson computer
communicates with the controlling computer by means of a RS232 connection. The
thermometers are placed on the copper sample holder and have a distance of a few
centimeters to the sample. We are using three resistive thermometers: a Germanium-
thermometer that is calibrated to the temperature range of 10K-1K, a RuO,-thermometer for
temperatures below 1K down to the base temperature. The third thermometer is placed on the
mixing chamber to control the cooling procedure. QOccasionally a forth thermometer are
placed on the sample holder, to have a second reference to the existing thermometers, or on
the still if problems on the cooling procedure occurs. The thermometers are read out by a
resistance-bridge in the ORPX electronics that measures the resistance by extremely small
voltages down to 1uV. The ORPX electronic was also developed at the CRTBT and
manufactured by Barras-Provence.

The coil system consists of a superconducting de-coil and a small ac-coil. The de-coil
is supplied via a current source that is voltage controlled by an analog/digital converter
connected to the control computer. The ac-signal for the ac-coil comes from the signal
generator of the lock-in amplifier or an external reference source also control by the HP
computer.

The magnetic signal of the sample is transferred by a superconducting pick-up coil
system (a gradiometer) to the SQUID that is placed in a NbTi-tube outside the field created by
the main coil. The analog SQUID-output is digitized by a Keithley-multimeter or a lock-in
amplifier, depending on the experiment, and recorded by the control computer. For the
protection against exterior noise and to stabilize the field a superconducting shield of NbTi is
placed between the detection coil and the superconducting de-coil. For a change in the de-
field this shield has to be heated each time above the critical temperature of Tc=9K. A new
measurement can only be done after a certain time (~20 sec) when the shield is cooled down
again and possible flux creeps in the shield have settled.

The sensitivity of the SQUID can be reduced by a set of inductive shunts between the
gradiometer and the SQUID. This shunt-system reduces the signal by a factor of 10 to 10°.
The sensitivity of the detection system is of the order of 107-10" emu.

Measurements in absolute values

The voltage output of the SQUID-electronics is proportional to the flux in the SQUID
and consequently to the magnetization of the sample. The gradiometer of the pick-up system
consists of two loops of a superconducting wire wound in opposite directions. Ideally a
homogeneous magnetic field will not induce a current in the gradiometer. In reality the
gradiometer will of course never be perfectly wound and a small signal will be seen. A more
intriguing problem is that for each measurement a unknown amount of flux is trapped within
the pick-up loop. Beside the signal of the sample each measurement will a have an arbitrary
offset. In order to measure the magnetization in absolute units we use the extraction method.
This means that the sample is moved through the two loops of the gradiometer. In our case the
whole dilution refrigerator with the sample is moved. A plot of the measured signal versus the
displacement gives a function that is flat at the extremities and has at the center a maximum
(sample in the upper loop, say) and a minimum (sample in the lower coil). The difference
between the maximum and the minimum is proportional to the sample’s magnetization and
neglects the constant offset that will only shift the whole curve up or down. The HP-computer
controls the whole procedure and calculates also the difference between the maximum and the
minimum by fitting the curves using a chebychev polynomial. The calibration to convert the
voltage output of the SQUID into physical units is done by various samples with a well-
known signal like superconductors, paramagnets, or ferromagnets. To calibrate the system
lead spheres and a Niobium rod have been used. Below the critical temperature a type I

15




superconductor is a perfect diamagnet, e.g. for a perfect sphere the magnetization is exactly
Xagparens = —3/87 . In addition a small coil, a Nickel sample and CMN (cerium magnesium

nitrate) have been used for the calibration. The later, CMN was also used to check the
thermometry. CMN is a perfect paramagnet down to the milliKelviin range and obeys the
Curie law. The susceptibility versus 1/7' must be a straight line with a Curie constant of
C=10.375 [emu/mole].
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Figure 1.1,2: Scheme of the microSQUID system.
The microSQUID system

The setup of the microSQUID is schematically shown in figure 1.1.2. The low
temperature parts are placed in a vacuum. To maintain the low temperatures in the center of
the cryostat 4 screens are used. The outermost screen is made of stainless steel and separates
the inner vacuum from the atmosphere. The inner thermal screens consist of copper and are
thermalized by a constant flow of liquid helium *He through a tube system. The temperature
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is decreasing from room temperature at the outermost shield over 3 screens at 80K and 20K to
the innermost thermal screen at 4.2K around the center of the cryostat. The dilution
refrigerator is placed in the interior shielding and the experiment table cools down to 100mK.
The coils are connected to the 4.2K-screen and the sample holder to the experiment table.
Like in the other system the temperature is controlled by a independent ORPX-unit with an
Epson computer. The thermometers and the heater is placed on the experiment table.

The sample holder carries the silicon wafer with the lithographic niobium or aluminum
SQUID on it. One wafer contains 2 or 4 motives each containing 12 lithographic SQUIDs.
For the measurements on Fe8 we used niobium SQUIDs. For the production of the SQUIDs a
thin layer of niobium was evaporated on a silicon wafer and the SQUID motives were etched
into this layer using lithographic methods. The SQUIDs were produced at the laboratory L.2M
of Dominique Mailly in Bagneux. The sample is placed directly on this wafer close to the
SQUIDs.

Ideally the SQUIDs with the sample and the thermometers are at the same
temperature. However, during a measurement parts of the SQUID become normal and in
consequence give up heat and the temperature of the system increase. In fact the temperature
during a measurement increasing by about 100mK. It is possible that due to the continuous
heating of the SQUID, a temperature gradient builds up between the SQUID, the sample and
the thermometers. The problem is more acute when the samples are very small and placed
close to the micro-bridges of the SQUID [Wernstorfer 96]. In our case the samples were
relatively large, in fact larger than the SQUID itself and were placed far from the SQUID. We
observed no temperature differences between measurements made with the conventional
magnetometers and the microSQUID indicating that the heating problem of the SQUIDs has
in our case only a minor effect.

The SQUIDs are directly connected via a selection switch to the analog control
electronic “SQUIDHY”. The SQUID electronic is connected to a digital control unit “PDL”
that contains a programmable digital signal processor. Both systems were recently developed
at the CRTBT [Cernicchiaro 97]. The measurement procedure is controlled by a Macintosh-
computer that communicates with the PDL-unit. The electronics “SQUIDHY” applies the
current to the SQUID and measures continuously its state. The PDL-unit is responsible for the
timing and initialization of the electronics. The measurement software on the Macintosh-
computer is written in C using some high-level functions of the software library MANIP, also
developed at the CRTBT. A detailed measuring procedure of the hysteretic SQUID is
described in the section 1.3.
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1.2) Dilution Refrigerator

Most measurements were made at very low temperatures, below 1K down to 70 mK.
These temperatures were created by the technique of a dilution refrigerator.

The central unit of a dilution refrigerator consists of a closed circuit of a mixture of
3He and *He. The low temperature part of this setup is made of two chambers, the mixing
chamber and the still. A schematic view is presented in figure [1.2.1]. It shows the two
chambers with heat exchangers and two Joule-Thomson impedances. This central unit is
placed in a high vacuum and is shielded against the thermal radiation entering from the
exterior. A sealed pumping system maintains a continuous flow of the mixture.
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Figure 1.2.1: Schematic figure of the close SHe*He-~circuit of a dilution refrigerator.

The physical cooling principle is to lower the temperature of a liquid by reducing the
vapor pressure upon the surface. In this system 3He is pumped through an inert layer of
superfluid “He into vacuum. Below 0.8K a phase separation occurs in the helium mixture into
a “He-rich phase floating on a *He-rich phase. This phase separation takes places in the
mixing chamber. The still is kept at a higher temperature of about 1.1K thus the mixture has
no phase separation. In the still the mixture has a surface with a vacuum and an augmented
vapor pressure due to the higher temperature. The vacuum in the still is maintained by the
pumping system. He-atomes first diffuse from the *He-rich phase into the *He-rich phase in
the mixing chamber and than diffuse in the still into the vacuum. Then the *He gas is then re-
injected by the pumping system through a heat exchanger system and two Joule-Thomson
impedances into the mixing chamber. By this technique the effective diffusion of He through
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two surfaces at different temperatures is more effective than by simply pumping on a >He-
vacuum or “He-vacuum surface and consequently lower temperatures are achieved.

The sample is placed on a copper tress that is in thermal contact with the mixing
chamber. The temperature is regulated by an Epson digital computer with an analog interface
ORPX. Several thermometers and a resistive heater placed on the sample holder are
connected to the control unit. The temperature is permanently measured and corresponding to
the predetermined target temperature an appropriate current is applied to the heater.
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L.3) Principle of a SQUID

SQUID is an acronym for “ Superconducting Quantum Interference Device ”. A
SQUID consists of a superconducting ring with one or two Josephson junctions. SQUID are
certainly amongst the most sensitive devices for physics. Indeed, some SQUIDs have been
made that are close to the quantum limit in energy resolution [Awschalom 89]. In this section
we will discuss the physical principle of 2 SQUID by the example of a DC-SQUID which has
two Josephson junctions, A SQUID with only one Josephson junction is called a RF-SQUID,
see for example the reference [Gallop 91]. We also give details of the hysteretic SQUID:s.

— The superconducting state
A superconducting state can be described by a complex order parameter ‘¥'(7) as in

the theory of Ginzburg and Landau. This function is related to an energy gap of 2A in the
density of states via A =|¥’. The complex order parameter ¥(F)="¥, exp(i¢(7))has an
amplitude ¥, and an imaginary phase of i¢(¥). The superconducting current is related to the
gradient of the phase and the amplitude by

2 —
j= —[2—%; + @qu(;—‘)}q'g (1,13)
mc 1)

where A is the vector potential of the magnetic induction B=VxA. A direct consequence of
a superconducting current in a ring is the quantization of the magnetic flux & =areax B
through the hole of the ring @ =n®, with n = 0,1,2... and @, =hc/2e=2.0679x10™
[gauss cm?] the flux quantum. The total flux @ is the sum of the flux induced by the external
field ®,, and the flux induced by the superconducting current in the ring @, thus
=0, + P, =nd,. (2,1.3)

For a given @, there are many possible internal states of the superconducting ring
@' -, =md, withm=0,1,2, ... which satisfy the quantization condition (2, 1.3).

imt

— The Josephson Effect

The carrier of the superconducting current, the Cooper pairs, can tunnel through an
isolating barrier (the Josephson junction) between two superconductors. There exist a DC
Josephson effect and an AC Josephson effect depending on the presence of a potential
difference V across the isolating barrier.
The total current through a Josephson junction is directly related to the phase difference

Oy =¢,—¢, (3,13)
between the two superconductors on both sides. The phase of the order parameter is arbitrary
but fixed thus the phase difference is also arbitrary but fixed. The Josephson current is given
by
I{8,)=I,sin(5,). (4,13)

In the presents of an electrical potential V(¢) across the Josephson junction, the phase
difference will change in time

8(1)=8,+1/Q,[V(#yar. (5,13)
0

If the potential is zero V() =0 a current I(§) can pass the barrier without any resistance as

given by equation (4, .3). This effect is called the DC Josephson effect, see e.g. [Gallop 61].
If the current surpasses the critical current I(8) the junction will have a measurable

resistance.
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This de-current disappears if a constant tension is present V(z) = V, over the junction.

This voltage drop generates an alternating supercurrent at a frequency @ proportional to the
voltage @ =V, /®,. This is called the AC Josephson effect [Feynman 66].

Josephson
junction A

currant path A

R

path B

Josephson
Junction B

Figure 1.3.1: A DC-SQUID consist of a superconducting ring with two Josephson junctions.

— The DC-SQUID

A DC-SQUID is a superconducting ring with two. Josephson junctions as
schematically shown in figure [1.3.1]. The DC-SQUID exploits quantum inferences that occur
between the two pathways that enclose an area with a magnetic flux. For the two paths
through the ring A and B the phase difference is

Ap=8,,5 +1/®, [A()d5.(6,13)
A/B
The index indicates whether the current is passing through the Josephson junction by the path
A or B. A(5) is the vector potential along a path 5. The gauge invariance in a superconductor
force the total phase difference to be zero or a integer multiple of 2, equation (2, 1.3). The
induced flux in the SQUID area by the external field is
@, = §AG) 5. (7,13)
ring

Due to Stoke’s theorem this is equivalent to the more common definition of flux
® = B x ring areawith B the magnetic induction. The critical current through a DC-SQUID is

therefore given by
ﬂq)exf
cog :
( @, ]

Thus the critical current that can pass through a DC-SQUID is modulated by the flux induced
in the ring area by an external magnetic field. The critical current is maximal if the external
flux @,,, itself satisty the quantization condition @, = nd,, compare equation (2, I.3). An

ideal example of a SQUID-characteristic, i.e. the critical current Ir vs. the flux, is shown in
figure [1.3.2].

I.=1, (8,13)
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Figure 1.3.2: Characteristic of a DC-SQUID: The critical current is a periodic function of the total flux.

— Feedback technigue for a shunted DC-SQUID

In a common practical usage of a DC-SQUID, the Josephson junctions are
accompanied with a capacitance C and an ohmic resistance R in parallel to the Josephson
junction. Therefore the Vi-characteristics of the DC-SQUID is modified as shown by the
dashed line in figure [1.3.3]. Up to the critical current /; the SQUID has no resistance. For a
slightly larger current, up to /c> the SQUID has a non-ohmic resistance until the current
surpasses Ic; and the resistance of the SQUID becomes ohmic. A SQUID with such a ViI-
characteristic is called a shunted SQUID. The value of Ic; and I¢; change with the flux as
described by equation (8,1.3).

For magnetic measurements the SQUID is exposed to two sources of a magnetic field.
One component comes from the sample and the other from a small feedback-coil close to the
SQUID that is used by the electronic control unit and does not effect the sample. The DC-
SQUID electronics provides a magnetic feedback field that keeps the SQUID at the same
point in the non-ohmic region between I¢; and I¢», the working point. Thus if the induced flux
from the sample is changed the control unit keeps track of the change by a counterbalancing
field of the feedback-coil. This counterbalancing field is proportional to the signal of the
sample. For the high-field magnetometer and the ac-field magnetometer commercial SQUID-
systems of the type B.T.I and S.H.E. cooperation are used including the control electronics.
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shunted SQUID. We call the dashed part "non-ohmic" region because it doesn't extrapolate to zero.

— Measurement technique of a hysteretic SQUID ,

A microSQUID-system using hysteretic SQUIDs was developed at the CRTBT over
the recent years, see the thesis of Wolfgang Wernsdorfer [Wernsdorfer 96]. The Josephson
junctions of a hysteretic SQUID doesn’t have an isolating layer between two superconductors
but a microbridge that acts as a weak link between them. The underlying physics of the
Josephson junction remains essentially the same as described above but the VI-characteristic
of a hysteretic SQUID is different from that of a shunted SQUID. The characteristic does not
have a non-ohmic regime. If the current reaches the critical value of ¢ the micro-bridges
become normal and have an ohmic resistance, In order to reinstall the SQUID into a
superconducting state the applied current has to be reduced to a much lower value than Iry. It
is therefore not possible for a control unit to hold the SQUID on one working point as for the
shunted SQUID.

To measure a magnetic signal with a hysteretic SQUID, the control electronics
continuously measures the critical current. The electronic ramps up the current passing
through the SQUID until a resistance is detected, i.e. the micro-bridges become normal. Then
the current is immediately cut and the superconducting state is reinstalled. To follow the
change in a magnetic signal a feedback signal is applied as for the shunted SQUID. The
control unit is connected to a small coil that counterbalances the signal of the sample, thus the
critical current J-; remains constant.
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Figure 1.3.4: Schema of the ramping procedure measuring the critical current of a hysteretic SQUID.

— The technical realization of the feedback procedure for a hysteretic SQUID

The setup of the microSQUID system is shown in figure [I.1.2]. The control unit
consists of an analog device that applies a current to the SQUID and measures is resistance
and a digital unit PDL that takes care of the timing and drives the analog device. The
feedback is regulated by software on a Macintosh-computer. The Macintosh-computer
communicates with the PDL unit and calculates the feedback signal. The calculated value of
the feedback signal is communicated to an digital-analog converter that drives the feedback
coil via a voltage controlled current supply.

The measurement protocol is depicted in figure [1.3.4]. Each of the three ramps
represents one measurement of the critical current of the hysteretic SQUID. One measurement
cycle consists of three steps:

« At the beginning of a measurement cycle a constant current g is applied. This current
should be chosen slightly below the expected critical current. During a certain time “temps
parlier” this current is kept constant to give the analog electronic some time to stabilize. A
typical value for this time duration is about 100 psec.

» Afterwards the current is ramped at a constant rate v [A/sec]. As long as the current is still
below the critical current I-; the micro-bridges stays superconducting and the electronic will
measure no resistance. As soon as the critical current is reached the micro-bridges become
normal conducting and the electronic measures a resistance over the SQUID and the current is
immediately cut. When the ramp begins a counter is initialized that measures the time #c until
the critical current is reached “temps de mesure”.

» The control system wait some time after the critical current is reached “temps mort”. During
this time the micro-bridges will cool down and become superconducting again.

The measured time #c is proportional to the critical current of the [, =1

o+

parlier (o
Typical values for the critical current of the hysteretic SQUID we have used are of the order
Ic =1 mA. Occasionally the electronic doesn’t detect a transition of the SQUID. In this case
the ramp will be stopped after some time “time periode” and a new measurement cycle

initialized. This time period also determines the speed of the feedback. For our experiments
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we chose a measurement time (temps periode) of about 0.5 msec sec to 1 msec. Thus the
feedback can at maximum work at a rate of -2 kHz. The feedback was controled by a

Quadra Macintosh computer. The program compares the former critical current IZ2™ with
the recent value I,". The applied feedback signal is then changed proportional to difference
between these values.
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Figure 1.3.5: Characteristic of a hysteretic niobium SQUID.

Besides the very rare occasions that the electronics does not detect a transition in the
SQUID, the use of niobium SQUIDs has some problems. The SQUID-characteristic of a
niobium SQUID is far from the ideal case as depicted in figure [1.3.2]. Often the characteristic
of a niobium SQUID is double-valued as shown in figure [I.3.5]. This figure shows the
characteristic of an empty niobium SQUID we have used. For more details see [Wernsdorfer
96]. The measured critical current will jump between to branches and will strongly destabilize
the feedback. We therefore used a software filter to ignore useless measurements. This filter
program takes three measurement values of the critical current and calculates the average
value of the two values that are the closest to each other and neglects the third value. This way
we have obtained good results and misleading values for the feedback software are omitted.
This filter will of course only work if at least two third of the measurements are correct. We
obtained by this method satisfying results but on the cost of the feedback speed which was in
our case not critical.
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Dans ce chapitre nous donnons un apergu de la théorie de ’effet tunnel quantique
d’aimantation. Dans la section II.1 nous discutons l¢ concept de spin géant. Une molécule qui
se compose de plusieurs spins est décrite par un Hamiltonien complexe et peut avoir une
grande variété d’états excités. A basse température seules les excitations de basse énergie sont
possibles et la structure interne de la molécule est négligeable. Sous cette condition,
I’Hamiltonien peut &tre simplifié, ¢’est-3-dire ramené a celui d’un systéme a un seul spin, le
spin géant. La molécule apparait donc comme une entité avec un spin S unique. Dans la
section I1.2, nous décrivons I’effet tunnel quantique d’un tel spin géant. En présence d’une
barriére d’anisotropie uni-axiale un axe facile est déterming et les 25+1 états s d’un spin sont
séparés. Il ne reste que la dégénérescence entre les états tn. Pour I'effet tunnel quantique il
faut des termes dans I'Hamiltonien qui brisent la symétrie en direction de 1’axe facile. Ces
termes perpendiculaires déterminent une amplitude tunnel quantique. Le spin peut seulement
franchir la barriére d’énergie si la différence entre 1’état initial et final est plus petite que cette
amplitude tunnel quantique. A haute température, le spin peut franchir la barriere par
activation thermique. Le spin interagit avec des phonons et selon la distribution thermique de
Boltzmann il peut franchir la barriére d’anisotropie avec une certaine probabilité. Dans la
section I1.3 nous discutons quelques détails relatifs aux effets d’environnement sur un spin
géant. I1 s’agit d’un apergu des théories récentes sur un bain de spins nucléaires et un bain de
phonons et leur effet sur le spin géant. La derniére section I11.4 décrit comment les effets
d’environnement peuvent détruire la cohérence quantique dans ce systeme.
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IL.1) Giant Spin Model
The idea of a giant spin is to represent a magnetic entity, e.g. a single domain particle
or a molecular nano-magnet or molecule, by a single spin degree of freedom §. That is to

. L n . - N .
represent all internal electronic spin degrees 5, by a single, central spin §= 2#1 §,. This

concept is only appropriate for the low temperature regime with small dissipation effects of
the environment and on an energy scale well below a typical excitation of an internal degrees
of freedom.

A theoretical approach to describe its motion is to use semi-classical methods on a giant spin
S in the limit lim#S = const. thus implying S — c [Hemmen 86a, Hemmen 86b, Enz 86].

h—0

Another method is to truncate a comprehensive, "high energy" Hamiltonian to a low energy,
effective Hamiltonian. It turns out [Stamp 98] that for a large class of high energy
Hamiltonians the truncated, effective Hamiltonian shows some universal properties, i.e. a
single effective Hamiltonian describes well the low energy properties of a variety of different
high energy Hamiltonians. Including an environment a general Hamiltonian has the form

H=H,®+Y H,+H,, (1,1
where H, is the Hamiltonian of an environment, like e.g. an oscillator bath (phonons) or a
spin bath (nuclear spins), with its interaction via ﬁim to the central spin I;’o(g). The

summation symbol should just indicate that the central spin might couple to several
environmental influences, like phonons, nuclear spins, electromagnetic fields etc. Thus for an
organo-metallic molecular magnet each magnetic molecule containing a number of electronic
spins {&“} is mapped on central, giant spin surrounded by a non-magnetic, organic matrix.

The Giant Spin
For the giant spin Hamiltonian a quite general form can be given as

N N
A8 =Y KIS + %2 KA1 +587) .11
=1 r=1
acting on a Hilbert space of the dimension D[ﬁo(ﬁ)}=25 +1. This form separates the

diagonal components ﬁg(i), conserving the S,—states, from the off-diagonal components
I;’()L(i,i), which breaks the z-symmetry and allow tunneling between the S.-states. The
coefficient K! represents the uni-axial anisotropy and formally K'= gugH, is the Zeemann-
term for an applied longitudinal magnetic field H,. K is the in-plane anisotropy.

This giant spin Hamiltonian results from the truncation of a high energy, microscopic
Hamiltonian like

(16 1 prach , 1 Bocsf

A,({s})= = ¥ g5t +§2Kf §78% (3,1L1)
<i, > i

acting on a much larger Hilbert space of the dimension D[I;lo({s"*‘})] :Hilﬁi +1. This

Hamiltonian takes into account explicitly the internal electronic spin degrees of freedom

including their exchange or super-cxchange interactions. A truncation of this kind is only

meaningful if the internal excitations of H ({3‘[}) are negligible on the energy scale of the

giant spin Hamiltonian, For example internal excitations like magnons can lower their energy
by spreading over the whole sample. As the sample (i.e. also S) becomes larger, these
"internal magnons" can interfere with the 25+1 low energy states of the giant spin.
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A Giant Spin in an Environment

For the molecular nano-magnet systems under consideration the most important
environmental influences come from the surrounding nuclear spins of a molecule and at
"higher" temperatures from phonons of the crystal lattice. Both effects can be described in
terms of an environmental bath (spin bath, oscillator bath) and its interaction with the central
spin. In general a mapping between the oscillator bath description and the spin bath
description is not possible [Prokefeev 96]. A crucial difference between these models is that
the oscillators are only very weakly affected by the central system whereas the spins in the
spin bath model change the spectra and dynamics completely [ Stamp 98].

~ Nuclear Spins
For the spin bath of the nuclear spins the Hamiltonian for the spin bath and the interaction can
be written as [Stamp 98]

n " . 1 N . A N N .~ n

i e =1 3586, + X3 vitrer @ Ly

k=1 k=l k=1

where 6, represents the nuclear spins, @, the coupling constants, and V% the dipole inter-
nuclear interaction within the bath. A separation of the interaction term into a longitudinal and
a transverse component gives

X . 18 e L[ 3
A ($.18.))= Y oldol + Yo (8,60 +56%) .10
k=1 k=1

int

with a)ﬂ, w; the longitudinal and transversal coupling constants respectively. The dynamics
of the nuclear spin system is governed by longitudinal 7)—processes and by transversal
Ih—processes, At low temperatures 7' increases dramatically while 75 is of the order of 10
“_107 sec [Prokoflev 97a, Stamp 98]. The inter-nuclear interaction Vk"‘f are of the order of

~ T, and this dynamics will still be present at low temperatures [Prokofev 96].

— Phonons
At temperatures where phonons become relevant an additional pair ~ HZ*"" + 7" comes

int

into play. Their effects can be well described in terms of an oscillator bath as first studied by
Feynman and Vernon [Feynman 63] and Caldeira and Leggett [Caldeira 81, Caldeira 83].
Using the "spin—boson" model the Hamiltonian is given by [Stamp 98]

1/4
{y phonon Fy phoron __ o a m, w + 1
Fphonon . fphonon _ ?ﬂsxsy( i j ; Ié—i—[bé +57 |+ ;(bgbﬁ + 5) (6,IL.1)

olecule

where Q, is the low energy cut-off, m, the electron mass, Mygecur. the mass of the molecule,
w, the phonon energy, @, the Debye temperature, and bﬁ,b; the phonon annihilation and
creation operators.
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I1.2) Quantum Tunneling of the Magnetization in Molecular Magnets

In a molecular system with a sizable anisotropy the spin might flip via under barrier
tunneling. Given a giant spin S of a molecule with an anisotropy of Hl = ~-K ”Sf, i.e. Sis not
too large and the anisotropy not too small the cigenvalues E,, of the eigenstates |S,m) are well

separated with a remaining degeneracy between the states of same modulus of |m| and
opposite sign tm. The level spacing AE, between the energies E, and E,.; is

AE_ = K'(2m —1) and is of the order of a few Kelvins for the systems under consideration.
See the schematic level scheme in figure [11.2.1].

thermal activation
m=0

m=il 7 A g S m=1
m=+3 m=-3
m=+4 me-4
m=+5 m=-b
m=+6 m=-6
m=+7 - phont:ry m=-7
m=+8§ m=-8
m=+9 m=-9
tunneling
m=+10 - m=-10

Figure I1.2.1: Level scheme for S=10. The spin might gain energy by a phonon and overcome the barrier or it
might tunnel directly through the barrier. Quantum tunneiing through the barrier is only permitted if the initial
and the final state have the same energy up to the tunnel splitting Aqpnet.

— thermal activation
The states are populated following the Boltzmann distribution p, (T) < exp(—Em / kT).

At high temperatures the probability of a spin to be near the top of the energy barrier is large
thus a thermal activated transition is probable with the rate of the Arrhenius law
T (1) =75 exp(—A / kT). The prefactor 7, ;, for molecular magnets can vary from

Barrier
107" to 107 sec and the relaxation at higher temperatures can be quite rapid. At low
temperatures T << KIS a thermal activated transition over the barrier is extremely unlikely,
since the relaxation time becomes astronomically large, the molecule is most likely to be
found only in the lowest states.

— quantum tunneling

If an off-diagonal term H l(S,P,S_) is present S; is no longer a good quantum number,
i.e. S, is not conserved, and transitions via tunneling are possible. The off-diagonal terms give
rise to a tunnel splitting Ayuner. Tunneling is only permitted if the initial state £, and the final
state £, are in resonance lEm -E, | < Aumner. The ratio of the level splitting to the resonance

width depends of course on the ratio of the diagonal to the off-diagonal terms in the
Hamiltonian. For the systems of interest, Fe8 and Mn12, the resonance width is much smaller
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than the level spacing Agumer << AE,. The relaxation rate 7.’ in resonance in this quantum

gim
regime is temperature independent. In consequence a molecular tunneling system will show a

crossover from a thermal activated behavior with a relaxation time r;j(T) at higher
temperatures to a temperature independent relaxation time 'r;,fn at lower temperatures. The

crossover temperature 7, can be estimated from the Arrhenius law. At the crossover
temperature 7, = T, (7;) thus

KT = A gy 110(T 1Ty _py). (1,11.2)

Resonant Quantum Tunneling
An applied external field H shifts the energy of the eigenstates according to the
Zeemann term. Neglecting the off-diagonal terms, the Hamiltonian is

H=-K'$+gu,S H. (2,112)
A degeneracy between the states m and -(m-n) will regularly occur for the "resonance" fields
il
H, znL,nzo,l,...S. (3,11.2)
Sly
Including the off-diagonal H L(SJr,S_) elements complicates the situation since the states

|§,m} are no longer eigenstates, and the wave function must be written as a mixture of states
|S,m') = Zm &, ¢ |S,m). In particular if the off-diagonal term has the form

(3,8 )=k8/+8) @12
with K;' << KV the states |S,m  nr) with n=-S-5+1,...,5-1,5 will mix. As a consequence
the resonance field will differ from H, in equation [2, I1.2] and depend also on m. Level
crossing occurs at the field values I, =nK'/gu, +AH, with AH, << K'/gu,. The

energy levels will not coincide at the same field value but for each pair of states tm the

resonance field is systematically shifted with m, see e.g. [Thomas 97].
An exception are second order off-diagonal terms, i.e. » = 2 in equation (4, 11.2). In this case

the off-diagonal term becomes I;'"LIS,m)zKl(m(m-1-1)+m(m—1)):21{Lm2 and the
resonance field is H‘nzn(Kii +2Kl)/gu3, n=0,1,..5 and the crossover field remains

equidistant and all pairs tm will coincide at the same field value.

It has been shown experimentally that the relaxation time varies strongly with the
external field. DC-relaxation measurements in the quantum regime show appreciable
relaxation only within a small range of the resonance fields and almost no relaxation between
these fields. A hysteresis cycle at low temperatures shows a periodic change of the slope, with
a strongly enhanced siope at the resonance fields.

Theoretical Results

In this section a short summery of existing theories and their results will be given.
These pioneering theories are based on isolated spins and neglect any environment or
interaction between the spins. Different methods have been chosen to solve the tunneling
problem for different situations, but some features are common in their solutions:

- Suppression of quantum tunneling for half-integer spin S
— Tunneling rate 7, =7,'x" with x o< K* /K]

— A transverse magnetic field /7, enhances tunneling

— Estimates vary over a wide range but it seems improbable that the tunnel splitting for
Fe8 exceeds 10K (~200Hz) and for Mn12 10"°K (~2Hz)
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The possible methods for calculating the tunneling amplitude of an isolated giant spin are:

1) WKB-Method:
Solving the semi-classical problem S — oo by mapping the spin system on a particle
system and using the WKB-formalism [Hemmen 86a, 86b, 88].
2) Perturbation Theory:
Can be applied when the off-diagonal elements are small compared to the anisotropy
barrier [Korenblit 78, Garanin 91].
3) Instanton formalism:
Using the path integral formalism and integrating over the classical paths
[Enz 86, Ioselevich 87].
4) Diagonalization:
If the Hamiltonian is simple enough a direct diagonalization may be possible,
see annex | for an example.

— Examples of detailed solutions
« Van Hemmen and Stité [Hemmen 86a, 86b, 88, 94] start from the quite general Hamiltonian

I:IO(S') - —K"|§Z|I u%iK;L(S\: + S'I) (5,11.2)
r=i

with K! and K positive and assuming a strong parallel anisotropy Kls' >> EN K'S

where §>>1 is the total spin. They suggest that spm tunneling could be described as a
hopping process of a particle on the spectrum of S Assuming only one coefficient K
non-zero (» = N) their semi-classical treatment yields for low energies £ < —-K'S" a tunnchng

amplitude A, of
KJ'SN 25!N
Ayt =T | 22— 6,11.2
tunnel 0 ( 2|E| J ( )
with a quantum mechanical attempt frequency of
S =IklsT 2m. (7,112)

« Garanin [Garanin 91] has chosen a perturbative approach to calculate the tunnel splitting for
a system described by the Hamiltonian

H=-DS$*+ 352 (8,11.2)
and found a tunnel splitting for B<<D of
' m
P L C s m)'( ) . (9,11.2)
[(m =D (S-m)!\16D
This result can for the ground state and S>> 1 be simplified to

8DSY?( BY
A= =, 10, 11.2
=2 (49) (10, 112)
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11.3) Environmental Effects

Nuclear Spins

The effects of a bath of nuclear spins can be discussed in terms of an additional
magnetic field a central spin experiences [Stamp 98]. In this chapter we take only the
hyperfine interaction into account and neglect any further interaction, e.g. the dipole fields of
the electronic spins. The nuclear spins within and around a giant spin in a molecular magnet
give rise to a hyperfine field acting on the central spin and vice versa, the central spin will act
via its dipole field on the magnetic moment of the nuclei. The energy bias of a spin bath of N
nuclear spins on a two level system, i.e. the giant spin is either up or down (compare equation
5,1L.1), is given by

N
e=Y olo® (1,11.3)
k=1

where we have neglected the transverse term @; =0. The polarization of the nuclear spin

bath is P= 26’k and several nuclear spin configuration {6‘k}k:l , can result in the same
- ,

polarization, i.e. they are in the same polarization group. The values of wﬂ are spread around

a @, in a way that \/2 (w! —w,)/ N = 8w. A measure of the distribution width within one
k

polarization group is &, ~ v/NSw,. It has been argued in [Stamp 98] that in a real system the

polarization groups are overlapping thus in a sample the hyperfine fields are varying over a
range of E, ~ v Nuw,.

1.2 . T T 1

p(e)

Figure I11.3.1: The hyperfine energy spreads & per polarization group sum up over the whole sample to a much
broader distribution E;.

In addition to this energy bias spread, the magnetic moments of the nuclei vary strongly from

element to element. Manganese ;. Mn has a strong hyperfine field with a nuclear spin of

[=5/2. In contrast natural iron consist mainly (~97%) of the isotope , Fe which has no
magnetic moment since /=0. The hyperfine field does not just originate from the ion nuclei of
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the magnetic cluster but also from e.g. the hydrogen nuclei of the organic ligands around and
within the molecule. In Fe8 for example there are about ~100 hydrogen atoms within each
unit cell. Therefore an exact evaluation of the hyperfine field is impossible. Estimates for
Mn12 give an average hyperfine spread of Eg ~ 0.4-0.5K (~300-400 gauss) and for Fe§ the
spread might be only of the order of about Ey ~ 107K (~1 gauss, although these values are
not certain but at least the spread for Fe8 is much smaller than for Mn12). These fields are
much larger than the estimated tunnel amplitude for these systems A,Wel~10'8~—10'mK.

Prokof'ev and Stamp argue [Prokofeev 96 & 97, Stamp 98] that a static nuclear spin bath will
block the relaxation while taking the dynamics of the nuclei into account give rise to
incoherent tunneling.

— static effect
The spread of the hyperfine fields within the molecules of a sample is much larger
than the tunnel amplitude, £¢>>A,, ;. and most giant spins in the sample are off resonance.

Only a very small fraction of the molecules can tunnel where the initial and the final state of
the giant spin are accidentally in the range of the tunnel amplitude A The system is

essentially blocked.

tunnel *

— dynamic effect
The inter-nuclear interaction Vk"‘f gives rise to a dynamics within the spin bath, see

equation {5, II.1). V}ff is of the order of the T>-processes (Vk‘,"ﬁ ~T."). At low temperatures the

T>-processes are the only dynamics in the nuclei system since 7 will become very large
[Prokef'ev 96 & 97]. The hyperfine field will wander on average over the whole range of &

within a time 73 [Prokefev 96, Stamp 98)]. T, is typically of the order of 10-100 kHz even in
the milliKelvin range. This rapid fluctuation will destroy the coherence in the central spin
system but sweeps it continuously through the small tunneling window of A,__ . Prokofev
and Stamp have shown that the central spin system will remain long enough within the
resonance window to allow tunneling. They derived in the limit of no nuclear spin co-flipping

with the central spin the incoherent tunneling rate for a single, isolate molecule is

2
ot = PRt (1 113

Vg,

In this formula the nuclei spin bath effects are summed in the denominator. Any additional
bias £ will alter the relaxation rate exponentially as

(&) =7 exp(-g/&). (2, 113)

36



energy

Figure 11.3.2: Effect of the hyperfine field on the lowest lying levels m = +10 within one polarization group. A
static hyperfine field that shift the energy level by & larger than Aqqqe Wil block the system. Within a
polarization group the hyperfine fields are distributed over a width &;. Nuclear Th-processes might shift the
energy levels over the whole range & and will eventually open a tunneling window for some time while
sweeping through Awaner.

Phonons

At not too low temperature phonons can influence the relaxation dynamics in various
ways. In the thermal activated regime phonons govern the relaxation rate in an ideal case as
given in the Arrhenius law 77 = 7, exp(-A samier | KT'). Beside this net effect, single phonons

can influence the relaxation. In a theoretical description phonons couple to the spin via the
matrix element (m{V, im') of the spin-phonon interaction, which are not quantified for these

kinds of systems but can be assumed as small. We will outline here some recent ideas that
may be of importance near the crossover temperature between the thermal activated regime
and the quantum regime.

— thermal activated cascade
Neglecting any tunneling effects, the population of the spin levels as function of
temperature follows the Boltzmann distribution p*™(T)= py*" exp(~E,, / kT). The barrier

"

for an anisotropy of ~DS” is A, = DS® with the unperturbed eigenstates E, =—Dm” and

m==S,...,.+S. Thus the population of a higher state is exponentially small. The energy
difference AE, between the levels m and m—1 is AE, = D(2m~1). A phonon of this energy

can lift the system from one state to the next higher state, and this energy is much smaller than
the energy difference to the top of the barrier. Therefore a cascade process might be possible
where a system is lifted in a sequence from one state to the next until it reaches the top of the
barrier, see figure [11.3.3]. Afterwards the system may cascade down on the other side. Villain
et gl. [Villain 94] calculated that a thermal activated cascade has a relaxation time of
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4 3 exp(—A / kT)

T - Barrier 1, 113
casc 0 _casc 1— GXP(— A Sorrer / S2 kT) ( )
with
2
- 3 V A3 arrier
O_l_ca.vc = _2"—- | 55‘ = & M (2: II3)
g pcphrman S

Cononen 18 the phonon velocity, p the specific mass, and V; the matrix element of the

spin—phonon interaction. Comparison with experiments are difficult because the spin—phonon
interactions are not known. A tentative estimate indicates that 7, . is much larger than

obtained by experiment [Villain 94].

m=0
m=+ m:-%
m=+ m=-
m=+3 m=-3
m=+4 m=-4
m=+5 m=-5
m=+6 mz=-6
m=+7 m=-7
mz=+8 m=-8
m=+9 m=-¢
thermal
excitation
m=+10 m=-10

Figure 11.3.3: A thermal activated cascade can result in a inversion of the spin direction without absorbing a
phonon that has the energy of the barrier height. The system is absorbing low energy phonons that are just
sufficient to jump from the state m = +10 to m = +9, then from m = +9 to m = +8, and so on. After the top of the
barrier is reached the spin will relax to the unpopulated states of opposite spin orientation.

— thermal activated tunneling
The closer the levels are to the top of the barrier the larger is the tunnel amplitude A, ,

see e.g. [Garanin 91] and consequently the relaxation rate. Very vaguely 7,' ~A ~x™ and

x oc K*/K'. The tunnel rate of a system can therefore be enhanced if it is thermally lifted to a
higher state and then tunnels, see figure {I1.3.4]. This effect might become important in an
intermediate temperature range where a thermal activated transition to a next level is probable
but a thermal activated transition to overcome the whole barrier is improbable.
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thermal
activation
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Figure I1.3.4: The tunneling can be thermally activated. The higher the energy state the larger is the tunneling
rate. Phonons can lift the system in a sequence up to a higher state. If the tunneling rate for this level is larger
than the probability to be lifted to the next higher state by a phonon the system will shortcut the cascade and
tunnel through the barrier. :

— thermal assisted tunneling

A phonon can add or dissipate the energy bias between the initial and the finial state
even if they are not in resonance, see figure [I1.3.5]. As mentioned in the chapter on
incoherent tunneling, equation (4, I1.3), the tunneling rate will change by a factor (coupling
constant)* X (density of states) thus here V2 X (ho Y. Politi et al. [Politi 95] analyzed in

detail the tunnel rate for phonon assisted tunneling and found

phonon

o 12 2 3
pat - ﬂhSC;hunon |VS| (hZS) . (3, II-3) .
Cononon 15 the phonon veloeity, p the specific mass, and V, the matrix element of the

spin-phonon interaction. A.S = gy, H,S is the energy shift due to a magnetic field H) along
the easy axis thus giving the energy bias between the unperturbed eigenstates m=x5. In
equation (3, I1.3), the quantum coherence rate of the isolated system ’r;cl is included in the

matrix element V, [Politi 95].
Note that this mechanism gives a minimum of the relaxation rate 'r;;, for H, =0 [Burrin96].
This 1s in contrast to experiments which show a maximum of the relaxation rate ‘L';;r around

zero-field [Paulsen 95a]. In addition, 2 non-monotone resonant behavior was observed as
function of the external field.
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[N

initial

tunneling final

Figure 11.3.5: If the spin-phonon coupling is large enough the tunneling can be thermally assisted. Without any
environment a spin can only tunnel if the initial and the final state have the same energy within Ay, By

coupling to an environmental bath the energy difference between the initial and the final state of the spin can be
gained from or dissipated to the environment.
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11.4) Coherent and Incoherent Tunneling

According to quantum mechanics, under certain conditions a system can be prepared
in a state that is a superposition of several eigenstates. For example, a system may be
described in terms of the un-perturbed eigenstates states and an additional symmetry breaking
contribution that gives rise to a tunnel splitting. If the system is isolated, a transition between
its states can occur in a coherent way, i.e. the complete information of the initial quantum
state will be preserved during each transition. However, including an environment which is
usually associated with dissipation the transition will become incoherent, thus after every
transition the information of the former states will be lost. In this case each transition would
have the same effect as a measurement process on a quantum system and no superposition is
present after a transition. :

Quantum Coherence
Assume an isolated system with two degenerate levels (+1) and a tunnel amplitude or
tunnel splitting of A between these states: If the system is at the time =0 prepared in the state
+1, it will for later times oscillate coherently between the states +1 and —1 at a frequency
v, =Al270. (1,11.4)

If an energy bias of € is pre"sent this quantum coherence rate will change. Supposing the
system is prepared at £= 0 in the eigenstates a, then p,, () is the probability to find the system

in the eigenstate » at the time ¢, e.g. a=+1 and p, . ()=1-p, (1) then

P (t)= A/ E*sin®(Er) with E=+A’+¢*. If & becomes large £>>A the coherent

oscillations will stop. The frequency will increase but the amplitude will reduce as ~ N E*,
see figure [I1.4.1]. The isolated system has no possibility to dissipated or gain energy from the
environment thus energy conversation suppresses the transition. In consequence, coherence
occurs only within a very narrow range where the bias is of the order of the tunnel amplitude.
Since the tunnel amplitude in molecular magnets is very small the experimental observation
of a coherence effect (magnetic quantum coherence, MQC) is very difficult to obtain. See the
experimental findings of Awshalom on ferritin [Awshalom92a & 92b] and the theoretical
criticisms in [Garg93a, 93b, 95, 96, Stamp 92a, Prokof’ev 93a, 94].

Incoherent Tunneling

If the quantum system is coupled to an environment, a transition between two states is
accompanied with an excitation to the environment. The consequence depends strongly on the
coupling. Certainly if the dissipation due to the environment is strong, i.e. strong coupling,
then any quantum effects will be suppressed and the system behaves classically. A weak
coupling to a dissipative environment will allow quantum effects like tunneling but might
make the transitions incoherent. Thus the information of the former quantum state will be
destroyed and the system appears after the transition, as it had been recently prepared in this
state. For example if the system is weakly coupled to an oscillator bath the tunnel rate is given
by

Tt () = D(EYY 0, (8) (3, 114)

including an energy bias & where A(g) = A? [ E* and the influence of the environment enters
by

v...(€) = (coupling constant)’ x p,,, (€). (4,11.4)
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The environment is assumed as a bath that couples to the spin and p, , (€) is the density of
states of the bath at the energy bias &. Thus if the density of states of the environment has for
example a gap at € the quantum system is in the same dilemma as an isolated system that it
cannot dissipate the energy for the transition and the resonance width is as small as for a
system without an environment.

(0)

+1,+1

/

T

ge
time

Figure 11.4.1: Coherent oscillation between the up and the down state. The plot shows the time evolution of the
probability to find a spin in an up state after it has been initialized in the up state. If the energy bias € is small the

- . . -1 . .
probobolity oscillates with a rate of T g between the up and down state. If the energy bias is much larger than

the tunnel splitting £>>A the fluctuations are faster than T;Cl but the change in the probability amplitude is very

small and spin flipping is almost impossible.
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Chapitre 111

L’Aimant Moléculaire Fe8

Le systéme principal que nous avons étudié est un composant organique contenant des
jons de fer désigné par simplification sous le vocable « Fe8 ». Ce systéme est compos¢ d’une
molécule de 8 ions de fer entourés par un cristal organique non-magnétique. La symétrie
cristallographique est triclinique avec une seule molécule par cellule. Dans une molécule les
ions de fer interagissent fortement par des liens de superéchange. 1.’ état de base a un spin total
de 10 avec 6 spins ioniques paralléles et 2 spins ioniques antiparalléles. La molécule a une
barriére d’anisotropic uni-axiale de largeur 27 K et les mesures de RPE indiquent une
anisotropie transversale d’ordre 2. Cette anisotropie transversale brise la symétrie en direction
de U'axe facile et permet I’effet tunnel quantique.
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IIT) The octanuclear iron nanomagnet, Fe8

A large part of my study was devoted to the Fe8-system. This work was done in close
collaboration with the chemistry department of the university of Florence, D. Gatteschi, R.
Sessoli, and C. Sangregorio. The synthesis of this compound was part of the thesis of C.
Sangregorio [Sangregorio 98].

— Molecular Structure

The Fe8-sample was first synthesized by Wieghardt ef al. [Wieghardt 84]. The Fe8
sample contains iron ion complexes of equal valence, Fe’*, cach ion carrying an electronic
spin of s=5/2. The skeleton of the iron complex is shown in figure [111.1]. The molecule has a
butterfly shape and is relatively flat in the crystallographic a-direction. Six iron ions placed at
the exterior of the complex are bound to an amine ligand FeN;O;, depicted as rings in figure
[1II.1] and the two central Fe*'-atoms are surrounded by an octahedral array of six O-atoms.
The iron ions in the complex are coupled together by 12 u,-hydroxo bridges and 2 g, -oxo

bridges. The ionic charge of +8 of the complex is almost compensated by 7 Br™ ions bound by
electrostatic forces and hydrogen bonds to the complex. The space group of the complex is

P1, thus triclinic. The charge excess of +1 is balanced by the charge of —1 of a [Br . SHZO](—)
molecule. The complete structure formula reads

{[cacm), e, - 0), (1, - OB, |Br, - 1,0} " [Br-8£1,0]”

where tacn stands for 1,4,7-triazacyclononane. The positive charged iron-complex and the
counterbalancing Br-molecule form a cation-anion lattice, corresponding to a distorted NaCl
structure of triclinic symmetry.

The crystal structure was analyzed by X-ray-defraction [Wieghardt 84]. The relative
positions of the iron ions to center of the molecule are given in table [1IL.1]. The positions of
the 8 ions were used for the calculation of the local field, see section V.1, assuming that the
individual 5/2 spins orientated along the g-axis.

X/a Y/b Zlc Spin
-0.1573 | +0.2031 | +0.1569 | +5/2
-0.2364 | ~0.0195 | —0.1305 | =5/2
-0.1717 | -0.2111 | —0.0060 | +5/2
+0.1714 | +0.2115 | —0.0063 | +5/2
+0.2365 | +0.0226 | +0.1326 | -5/2
+0.1563 | —0.1992 | -0.1563 | +5/2
+0.0046 | +0.1054 | +0.0453 | +5/2
—0.0031 | —0.1029 | -0.0392 | +5/2

oo l-ajvin ]t r—

Table IIL.1: Relative positions of the iron jons and their spin ground state

— Hyperfine field
Natural iron consists to 97% of the isotope 3, Fe which carries no nuclear magnetic
moment (/ = 0) only the isotope ;ZFC has a nuclear magnetic moment (/ = 1/2) which has a

natural abundance of about 3%. Although the hyperfine field due to the iron ions is small, a
realistic estimate of the hyperfine field must include the nuclei of the surrounding organic
matter. It is difficult to give an exact value but estimates are of the order of 107 K, see
[Prokof’ev 98, Abragam 70]. In addition the hyperfine field is very inhomogeneous because
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many molecules will consists only of 3, Fe -ions where a small hyperfine field is caused only

by the nuclei the organic ligands. In the other molecules containing iron isotopes with a
nuclear magnetic moment the hyperfine field will be considerably larger.

Figure IIL.1: Schematic view of a Fe§-molecule (PLUTON image). The large empty
circles represent the iron-ions, the small black circles hydrogen-atoms, empty small
circles oxygen-atoms, and the hashed circles nitrogen-atoms.

— Bonds and the Ground State

The iron ions interact by superexchange forces via the oxo-bridges. Their strenght
have been discussed in [Delfs 93]. The authors have applied the spin Hamiltonian formalism
to calculate all (2s+1)® = 1679616, s = 5/2, energy eigenstates of the molecule. The spin
Hamiltonian of the molecule was solved numerically. From these energy level scheme the
susceptibility has been calculated and fit to measured data in a temperature range from 4.2K
to 300K. Due to the complexity of the problem, they simplified the molecule structure to have
a Dy-symmetry. In this approach only 4 different bonds are remain. A schematic view of the
bonds and the ionic spin states in the ground state is shown in figure [II1.2]. All couplings
between the iron ions are antiferromagnetic and frustration effects are present in the triangle
couplings in the wings of the butterfly shape. The coupling strength of the bonds have been
estimated to be: J1~25-35 K, Jo~130-170 K, Ji~J4~20-50 K, with ./;<J;. The presence of
frustration within the molecule might result in canting of the electronic spin of the iron ions.

The calculated total spin of the ground state is =10 with 6 iron spins parallel and two
spins anti-parallel. This ground state configuration was confirmed by elastic neutron
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scattering experiments [R. Sessoli, private communication]. The energy difference to the next
exited state of total spin S=9 has been estimated to be 32K [Sangregorio 98].

Figure I11.2: Simplified interaction scheme of Fe8.

— The FeS-Hamiltonian
The giant spin Hamiltonian for Fe8 is give by

A=-D§ + Elz(ﬁf +§E). (1, 1)

The height of the anisotropy barrier is DS? and the second order off-diagonal terms give rise
to the tunnel splitting. The parameters D and E have been evaluated by EPR measurements
[Barra 96] and are recently confirmed by inelastic neutron scattering [Caciuffo 98]. The EPR
measurements give D=0.27K and F=0.046K in reasonable agreement with the results of the
neutron scattering measurements D=0.29K and E=0.047K. In the neutron scattering
experiment forth order terms of combinations of .§z,§+,§_, and S have also been estimated.

The prefactors for these terms are of the order of 10 K.
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— The unit cell
The Fe8-lattice is triclinic and the unit cell is defined by:

a=10.522(7)A & =89.90(6)°
b=14.05(1) A B=109.65(5)°
¢=15.00(1)A ¥ =109.27(6)°

One molecules per unit cell Z=1, molar mass m=2250, density p=1.92 g/cm®, unit cell
volume V=1956 A*. A schematic view of the unit cell is presented in figure [II1.3].

Figure I11.3: Schematic view of a Fe8-unit-cell. This image shows the relative positions of the Fe8-molecules
with respect to each other (PLUTON image).
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Chapitre IV

Résultats Expérimentaux
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IV.3.2) Fel7+Fel9 95
1V.3.3) Mnll 99

Dans ce chapitre nous présentons des résultats expérimentaux sur le principal systéme
étudie au cours de cette thése, Fe8, mais également des résultats sur d’autres aimants
moléculaires, Fed, Fel7+Fel9 et Mnl1. Nous avons mesuré ’aimantation en fonction de la
température et du champ et la susceptibilité en fonction de la fréquence et de la température,

Dans la premiére section, IV.1, nous donnons un rappel de la théorie classique du
paramagnétisme et du superparamagnétisme.

Dans la section IV.2 nous présentons les résultats obtenus sur Fe8. Ce systéme montre
un comportement superparamagnétique a haute température et un effet tunnel résonant a basse
température.

A haute température la courbe d’aimantation de Fe8 ne suit pas la fonction de
Brillouin d’un systéme paramagnétique simple mais une fonction qui prend en compte la
barriére d’anisotropie. La constante de Curie de la susceptibilité¢ en champ faible est plus
élevée que pour un systéme paramagnétique : elle correspond & la valeur que nous avons
calculée pour un systéme superparamagnétique. La partie imaginaire de la susceptibilité
satisfait le modéle de Debye et le systéme est donc géré par un seul temps de relaxation. La
courbe de relaxation vers 1 K est exponentielle comme prévu pour un systéme régulier et sans
interactions. Le temps de relaxation a haute température suit la loi d’Arrhenius avec une
valeur de la barriére de 24 K et un préfacteur 7p ~ 1077 s, bien plus grand que pour un spin
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libre. Dans cette gamme de température, Fe8 relaxe donc par activation thermique. Nous
avons obtenu les mémes temps de relaxation pour un échantillon en poudre et un monocristal.

Au-dessous d’une température de 0,4 K la relaxation est indépendante de la
température. La courbe de relaxation est non-exponentielle, bien décrite par une exponentielle
étirée. Le temps de relaxation varie fortement avec le champ externe. La variation n’est pas
monotone et montre un effet résonant : le temps de relaxation est plus court a des valeurs de
champ équidistantes de 2 kOe. Dans la premiére résonance, le temps de relaxation a une
valeur de 7~ 10* s et hors résonance une valeur de 10 s. La courbe d’hystérésis présente des
sauts aux valeurs du champ résonant et ’aimantation reste presque constante hors résonance.
La premiére résonance a une largeur d’environ 100 Oe et la deuxiéme résonance a une largeur
de 500 Oe. Comme dans le régime superparamagnétique nous avons mesuré les mémes temps
de relaxation pour un échantillon en poudre et un monocristal. Cependant nous avons observé
une influence de la forme du monocristal. Nous avons fait des mesures sur des échantillons de
forme allongée, sphérique et aplatie. La courbe de relaxation varie avec la forme mais les
paramétres de I’exponentielle étirée ont presque la méme valeur. Nous avons observé par
contre que la position de la premiére résonance change beaucoup avec la forme de
I’échantillon. Pour 1’échantilion long, aprés la saturation dans un champ positif, la premiére
résonance se trouve a une valeur de +80 Oe a +100 Oe. L’échantillon sphérique a sa premiére
résonance a +230 Oe et I’échantillon plat a une valeur de +200 Oe, également aprés une
saturation en champ positif.

Dans la section I'V.3 nous présentons les résultats expérimentaux sur 3 autres aimants
moléculaires, Fe4 (IV.3.1), Fel17+Fel9 (IV.3.2) et Mnl1 (IV.3.3). Tous se comportent comme
un systéme superparamagnetique avec une barriére d’anisotropie. Dans aucun de ces systémes
nous n’avons observé d’effet tunnel quantique :
soit il n’existe pas dans ces échantillon
soit la barriére d’anisotropie est trop petite (Fe4 : Apariere = 2,4 K, Mnl1 : Aparriere = 6.2 K) et
nous n’observons que de la relaxation par activation thermique
soit le systéme se compose de deux molécules différentes (Fel7+Fel9) que nous n’avons pas
pu distinguer dans les expériences.
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IV.1) Paramagnetism

In this chapter we recall some aspects of classical paramagnetism and superparamagnetism. In
a paramagnet the spins do not interact and have no preferred direction. In a superparamagnet
many individual spins can be replaced by a large collective spin and often anisotropy is
present.

— Curie law
A paramagnet contains say N magnetic ions of spins S and orbital moment L thus the
total angular moment is J=L+85.Inaweak magnetic field H the susceptibility y = dM/dH

will obey the Curie law
C

=— 1,1V.1
X=7 ( )
with
C= %ﬁf‘”n (2, 1V.1)
the Curie constant. g is the Landé factor, p, = eh/2m=9.27410x 107 [erg/gauss] is the

Bohr magneton, and k, =1.38062 x 107" [erg/Kelvin] the Boltzmann constant. If the orbital

moment is zero L =0 then J =S and the Landé factor is simply the g-factor of a bare spin
g=2. In cgs-units the Curie constant then becomes simply C = 0.5 S(S +1) [emu/mole]. The
Curie constant are often also expressed in units of emu/mass or emu/volmue.

If there are interactions between the spins as in a ferromagnet of antiferromagnet the
Curie law no longer holds. However, in good approximation, these interactions give rise to a

uniform shift of the Curie law on a 1/ y versus T plot as describe by the Curie-Weiss law
C
xX= o (3,1V.1)
The Curie-Weiss temperature © is proportional to the magnitude of the interactions. In
general interactions will have more subtle effects. The Curie-Weiss law represents the effect
of an interaction that give rise to a mean field interaction proportional to the magnetization
® =c__ M where ¢, 1isa constant factor.

mean mean

— Debye model

The dynamics of a paramagnet may be described by the phenomenological model of
Debye. It assumes that the dynamics is given by one characteristic time 7 and the change in
the magnetization is proportional to the magnetization at each instant like in a natural decay
process, Thus the time evolution of the magnetization is given by the differential equation

dM(t) :_M(t)—Mm (3.1V.1)
dt T
with an exponential solution for the time evolution of M(#)
M) - M, =(M, - M_)exp(~t/7). (4,1V.1)

M_ is the equilibrium magnetization of the system and depends on the external field,
temperature, etc.

For an alternating magnetic field H(f)= H,exp(iwt) the system will follow with the
same frequency @ but a difference in the amplitude and phase. The complex susceptibility
¥ = ¥ +ix'" in this case has a real and imaginary part as

¥ (@ )_1+ ngws (5,1V.1)
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[ (XT B ZS )wT
W) == L3 — 6,IV.1
| 7 () = Lo (6.1V.1)
Xs = Xu_. 18 the adiabatic susceptibility and x,. = x,_, the isothermal susceptibility,
following the Curie-law y,.(T)=C/T.

Superparamagnetism

The behavior of a paramagnet changes when an anisotropy barrier is present. In this
case the system is no longer isotropic but an energy potential V(¢,8) as function of the angles
¢ and @ breaks the symmetry. The origin of the anisotropy energy may be due to the
crystalline field or surface effects [Morrish 65, Aharoni 96].

A classical example is the Stoner-Wohlfarth model describing a situation of isolated, non-
interacting grains having a uniaxial anisotropy. In this case the energy of a single grain is
given by

E = K;sin*(¢ — 0) — uH cos(6). (7,IV.1}
In the simplified case where the anisotropy axis is parallel to external field H, 6 =0, the
energy has two minima at ¢ =0 and ¢ =7 with the energy E =—-ull and E, = +uH
respectively. The maximum in between occurs at cos¢ =—uH/2K,. Substituting this in
equation (7,IV.1) gives for the maximum E,,, = K (1+(H/H,)*) with Hy = 2K,/ u. Thus in
effect an energy barrier

A =K(I-(H/Hy)"  (8,IV.1)

occurs between the minima.

Arrhenius law

The presence of an energy barrier A changes the characteristic time. It is no longer
constant but depends on the temperature 7 and also on the magnetic field H. Applying the
Boltzmann law for thermal transition probability we end up with the Arrhenius law

7' =1, exp(—-A/kT)9,1V.1)
where the energy barrier A may vary with the field A(H) as mention above for the Stoner-
Wohlfarth model, see [Aharoni 96] for a detailed discussion. The prefactor 7, was first
determined by Néel [Néel 49] and later refined by Brown [Brown 63]. Typical values in the
literature for 7, are 107-10" sec a free spin usually has a value of 7, ~ 10791077 sec.

If the system is not govern by a single relaxation time 7, for example when a
distribution in size or orientation of particles is present or if there are interacting spins, then
deviations from the Arrhenius law will be observed. For these situations a large variety of
phenomenological formulas are given in the literature. One example is the Fulcher law

T = 75t exp(—A/ k(T - T)) (10,1V.1)
where Ty is a phenomenological fitting parameter related to the magnitude of an interaction
between the spins,
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Blocking temperature

The blocking temperature 75 is defined as the temperature where the characteristic
time of the system 7(H,T) is of the same order as the time scale of the experiment 7, .
Below T the system appears as frozen. Note that the blocking temperature depends on the
kind of the experiment an depends in general on the frequency. Thus the blocking temperature
Tg may vary from experiment to experiment like dc measurements, ac measurements or
méssbauer experiments.

To give an example we will discuss a typical ac-measurement. In the experiment we
measure the ac-susceptibility at a constant frequency @ as function of the temperature 7. The

characteristic time of the sample %(7) is increasing with lower temperatures monotonically as
e.g. given by the Arrhenius law (9, IV.1). The experimental time scale is given by Tex, = 1/
Lets for simplicity assume the adiabatic susceptibility is zero then the real and the imaginary

part of the susceptibility as function of the temperature is given by
1 C
"MN=———— 11,IV.1
2D 1+7°(M)/1., T ( )
(Mt C
"T)=—F7""—— (12,1V.]
x' () 1+, T ( )
As long as 7,,, >>7(T), i.e. at high temperatures, the real part is dominated by the Curie-law
and the imaginary part is almost zero. At very low temperatures where 7, << 7(T) the real
part and the imaginary part are vanishing. In the intermediate range where 7,,, ~ 7(T) the real

part is diminishing and starts deviating from the Curie-law and the imaginary part has a
maximum at 7, =7(T). We can thus determine the blocking temperature 75(7) from the

maximum of the imaginary part of the susceptibility
Top = T(Ty).
If we want to do a de-relaxation measurement to determine the characteristic time we

have to fix the temperature T and resolve the characteristic time, in this case called relaxation
time, by a fit to the relaxation curve, ¢.g. by a exponential function equation (4, IV.1).

Since for both cases the dynamic is determined by the differential equation (3, IV.1),
the relation between the characteristic time 7 and the temperature 7 is the same. It doesn’t

matter if we determine it by ac-measurement 75(7) or dc-measurements 7(7).
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1V.2.1) Fe8, Superparamagnetic Regime

In this chapter we discuss the magnetic properties of Fe8 at higher temperatures, that
is in our case in a range between 1K and 10K. We will shown that in this temperature range
Fe8 behaves as a superparamagnet with a spin of S =10. We estimate that the interactions
between the molecules are very small and shouldn’t exceed 0.1K.

We present measurements on a single crystal as well as on a powdered sample. We
measured the dc-magnetization as function of the field up to 8 tesla and the ac-susceptibility
for frequencies in the range of 0.005Hz up to 6kHz.

The inverse de—susceptibility of Fe8 obeys the Curie-Weiss law in a temperature
range from 2K to SK. At 4.2K the magnetization curve for a single crystal is close to
saturation for fields larger than about 2 tesla and at saturation we found a value of about 20 us
indicating a spin of § = 10. The magnetization curve deviates strongly from the Brillouin-
function of a simple paramagnet. The data can be fit by a magnetization curve calculated for a
superparamagnet with an Ising-like energy barrier. The characteristic time of the system
follows roughly the Arrhenius law thus showing the behavior of a classical thermal activated
system. From these data we derived a barrier height of 24K in reasonable agreement with
previous EPR-measurements. The time constant Ty of the Arrhenius law is of the order of 107

sec which is considerably larger than that of a free spin.

Field dependence

The magnetization curve of on Fe8 single crystal measured at 4.2K and for a field up
to 8 tesla is presented in figure [IV.2.1.1]. The sample starts saturating for fields larger than
about 2 tesla. This field is about of the order of the anisotropy energy' of Fe8. The
magnetization continuous to increase, reaching a plateau above approximately 6 tesla. This
increase is most likely due to a small miss-alignment of the crystal (~5° — 10°). If all spins are
already parallel to the easy axis but not aligned to the external field, an increasing field will
force the spin to align with the field against the anisotropy energy. The magnetization
achieves a value of 204z as expected for S=10and g =2, Mo, = 2.5 up =20 up.

In figure [IV.2.1.2] three magnetization curves are presented for 3 different sample
shapes at a temperature of 4.2K. The aspect ratio of the long sample is 1.0 x 0.5 x 0.7 and of
the flat sample 1.0 : 2.9 : 3.6. The three curves are different for small fields but the curves for
the spherical sample and the long sample tend toward the same saturation value. One reason
for the differences in the beginning of the curves is due to different demagnetization factors
N. We expect that N > NPF"*=4q/3 > N* The internal field is then given by

HIw  =H — N*"P¢pf - Another reason might be a misalignment of the easy axis along

nt ermal applied
the external field. The spherical sample and the flat sample are especially difficult to
orientate.

VA field of 2 tesla corresponds to an energy of about 25K for a spin § = 10 system.

55




Mip)

H [tesla]

Figure IV.2.1.1: Magnetization curve of a single crystal (longl) up to 8 tesla. The sample has an aspect ratio of
about 1.0 x 0.5 x 0.7 and was measured along the longest axis of the sample, which corresponds roughly to the
easy axis.
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Figure IV.2.1.2: Magnetization curve for single crystals of different shapes. The difference in the magnetization
comes from different demagnetization fields due to the sample shapes and from a mis-alignment in the setup of
the experiment.
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In the annex I1 we calculated the magnetization curve for a Hamiltonian of Fe8
[1=-D82+E/2(S2+8)+qu,SH. (1, IV2D)

We show there that the contribution of the tunneling term E/ 2(§f + §f) to the magnetization

curve is negligible but we keep it for completeness. In figure [IV.2.1.3] a fit of this theoretical
curve to the data is shown for a temperature of 4.2K and a field up to 1 tesla. We see that the
Brillouin function doesn’t fit the data at all. The theoretical curve matches well the data if we
assume a demagnetization correction. In this case the internal field is given by

H, H,_ ..~ NM (2,1IV.2.1)

iniernal app
with a demagnetization factor of N = 2.5. See annex III for a detailed discussion on the
demagnetization field.
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Figure 1V.2.1.3: Magnetization curve of two single crystals and a fit to a theoretical function. The Brillouin-
function (dashed line) doesn't match the data. The calculated function (solid line) takes into account the
anisotropy term as well as the second order tunneling term in the Hamiltonian. To fit the data we have assumed a
demagnetization factor of N = 2.5,

Temperature dependence

The temperature dependence of the magnetization is shown in figure [IV.2.1.4]. The
experiment was made on a Fe8-single crystal (sx4) approximately 2.5mm x 0.6mm x 1.0mm
in a field of Happiiea = +830 Oe. In this figure we present the internal dec-susceptibility
Kiven =M1 H,. in the temperature range of 1K to 18K. To calculate the internal

susceptibility we have taken into account that the internal field is different from the external
applied field due to the demagnetization field, equation (2, IV.2.1). We approximate N = 1.25
from the reference [Brailsford 66] where the demagnetization factors are listed for a variety of
aspect ratios. In addition the ac-susceptibility (the real part x' (")) is shown for a frequency of
2Hz. The curves superimpose at high temperatures but deviate slightly at low temperatures.
Below 2K the ac-susceptibility shows a blocking effect and decreases to zero.
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Figure IV.2.1.4: Internal susceptibility of a Fe8 single crystal. The de-susceptibility was measured in a field of

H yppiiea = +830 Oe. To estimate the internal field we have used a demagnetization factor of N = 1,25, The ac-

susceptibility was measured at a frequency of 2Hz.

To fit this data to a Curie-Weiss law, we must restrict the temperature range. This is
because at too high a temperature, the system is no longer in a pure S = 10 state, but will mix
with the §'= 9 state. On the other hand at low temperatures saturation effects will occur and
also time effects. In figure [IV.2.1.5] the inverse susceptibility is shown for a temperature
range from 2K to 5K. In this temperature range the de-susceptibility and the ac-susceptibility
are both hnear and superimpose. We obtain from this plot a Cur1e constant of C'=134
[emwmole K™'] for the de- -susceptibility and C = 132 [emu/mole K™'] for the ac- susceptibility.
The theoretical value of the Curie constant for a spin § = 10 system and without an anisotropy
is C =55 [emwmole K™']. However, we have shown in the annex IT that the susceptibility of
Fe8 for small fields at 4.2K is about 2.4-times larger than of a simple paramagnet due to the
Ising like anisotropy (see table [AIL1]). Including the anisotropy leads to a theoretical value
of 132 [emu/mole K'] in excellent agreement with the measurement. From extrapolations of
the fit to the Curie-Weiss law to the 1/y = 0 axis, we can estimate that the intermolecular

interaction in the Fe8-system should be very small of about ® < 100mK.
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Figure IV.2.1.5: Inverse susceptibility in a temperature range from 2K to 5K.
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Characteristic time
In the high temperature regime 7> 1K we can determine the characteristic time of the

system by ac-susceptibility measurements. A sequence of ac-measurements for different
frequencies on a powdered sample is show in the figures [I[V.2.1.6] and [IV.2.1.7] and on a
single crystal in figure [[V.2.1.9]. In figure [IV.2.1.6] the real and the imaginary part are
plotted together. It can be seen that the maximum of ¥”’(7) occurs at the inflection point of

the real part of ¥'(7).
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Figure 1V.2.1.6: %'(F) and %"(T), the real and imaginary part of the ac-susceptibility of a powdered sample. The
maximum of %"(T) is about at the inflection point of %'(T).

This comes as follows: The Curie-law in equation (11, IV.1) is monotonous increasing and
the “step” in %’ (T) comes from the term 1/(1+®*7”). The inflection point of this function is
the zero-point of its second derivation, the first derivation is everywhere none-zero. The

second derivation of this function is

d?. 2 2 2.2 2

i 2l2 __ 2w i (d?:(T)) -4 a)'L'z(zT) +’L’(T)d 1:(;1'“) '

dT* 1+ w*t*(T) (1 + wzfz(T)) dT 1+ o T3 dr
If we assume that (7) has an exponential form and dz(T)/dT = ¢7(T) the expression in the
bracket on the right hand side only vanishes if wz= 1. This corresponds to the maximum of
¥”°(T). Even though this is only a simplified argument we will see that this is almost the case
in all ac-measurements we have made and present in this thesis.
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In the figures [IV.2.1.7] and [IV.2.1.9] the real and the imaginary part are plotted
separately. For higher temperatures, above the blocking temperature, the real parts of the
susceptibility x’(7) for all frequencies superimpose and follow the Curie-Weiss law. The
agreement with the Curie-law is shown in figure [IV.2.1.8].
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Figure IV.2.1.7: %'(T) and %"(T) of a powdered sample.
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Figure IV.2.1.8: Inverse susceptibility 1/x(T) of the powdered sample. For temperatures above the blocking
temperature the ac-susceptibility follows the Curie-Weiss law.
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Figure IV.2.1.9: %'(T) and %"(T) of a single crystal.

In figure [IV.2.1.10] we fit the ac-susceptibility data of a single crystal to the
theoretical curve that results from the Debye-model. For the temperature dependence we used
the Arrhenius law thus

wT, exp(A/T) _C_‘
1+(wt,exp(A/T)) T
This fit confirms that their is only one characteristic time present in the system.

x'(T)= (1,TV.2.1)
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Figure IV.2.1.10: Imaginary part of the ac-susceptibility for a frequency of 2Hz measured on a single crystal.

The data points are fit with the theoretical function for '*(T) due to the Debye-model including the temperature
dependence of the characteristic time, equation (1, IV.2.1).
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The imaginary parts x’’(7) have the same behavior for the powdered sample and the
single crystal. For lower frequencies the maximum shifts to lower temperatures and the peak
becomes larger and narrower. For a given frequency £, the peak iny’’(T) occurs when wt= 1
with @ = 27f This defines the blocking temperature Ty for for the characteristic time 7= 1/@.
The results are plotted in figure [[V.2.1.11]. We see that the temperature dependence of the
characteristic time is the same for the powdered sample and the single crystal. In this plot the
data do not lie on a straight line but show a slight curvature. Since we expect that the
deviation from an Arrhenius law is growing at lower temperatures, as we are approaching the
quantum regime, we used only the data point at higher temperatures for a fit to the Arrhenius
law. On a semi-logarithmic plot the Arrhenius law is a straight line
In(t) =In(7,)—(A/k) 1/T where the intercept corresponds to 7, and the slope to the energy
barrier height A. The fit gives a value of 7 =~ 107 sec and A = 24K. The barrier height is in
reasonable agreement with EPR-measurements [Barra 96], A = 27K. The prefactor % is much
larger than the value of a free spin which is typically of the order of 75 = 10™ — 10™* sec.
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Figure IV.2.1.11: The characteristic times of a powdered sample and a single crystal as a function of the
temperature. The data at high temperature are fit to the Arrhenius law.

It is interesting to note that the data may be fit to a Fulcher law. On a semi-logarithmic scale
the Fulcher-law reads In(7) = In(7, )+ (A/k)/(T —T,). The fit is shown in figure [IV.2.1.12].
This function matches better the data, but an extra parameter 7}, has been introduced. The
obtained values for this fit are very different to the values of an Arrhenius fit. One problem is
that the fit is very sensitive to the fitting parameters A and T, and the temperature range is too
small to obtain a reliable fit of this kind with unique parameters,
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Figure 1V.2.1.12: Characteristic times of the powdered sample fit to the Fulcher law. (Same data as in figure
[IV.2.1.11])
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Iv.2.2) Fe8, Behavior below 1K

Below 1K we found that the magnetization deviates from superparamagnetic behavior.
The characteristic relaxation time is faster than expected for a pure thermal activated process.
Below 0.4K the relaxation behavior becomes temperature independent. We interpret this as a
signature of quantum tunneling process. The relaxation is surprisingly not single exponential
as expected for an ordered system with only weak interactions. The data are best fit by a
stretched exponential function. A stretched exponential relaxation is ubiquitous in physics and
especially well studied for spin glass systems. Beside the shape of the relaxation curve we
will see that a stretched exponential fit is not perfect and variations of fitting parameters are
possible.

Relaxation measurements

For lower temperatures the characteristic time becomes slower, effectively too small to
make ac-measurements. We therefore used dc-relaxation measurements to determine the
relaxation behavior below 1K.

The dc-relaxation measurements were done at a constant temperature. The
measurement protocol is shown in figure [IV.2.2.1]. We first saturate the sample in a
sufficiently high field. Afterwards the field is changed to a predetermined value. When the
field is stabilized® a timer is set to zero and the magnetization decrease is measured
continuously as function of the time. The magnetization was measured using the extraction
method, thus we are able to measure the magnetization in absolute units.

field A A
saturation ]

magnetization

0 -
t=0

measurement

wwwwwwwwwwwwwww time
Figure [V.2.2.1: Measurement of the relaxation curve. First the sample is saturated in a large, positive field.
Afterwards the field is changed to a predetermined field value and the magnetization decrease is measured as
function of the time.

A series of relaxation measurements on a powdered sample in zero field is shown in
figure [1V.2.2.2]. Figure [1V.2.2.3] shows a similar series of measurements on a single crystal
and in an external field of Herrern = +100 Oe. These measurements where made in
temperatures from 1K down to 0.07K. It can be seen that the relaxation becomes slower for
lower temperatures. For temperatures below 0.4K the relaxation curves are identical. For
higher temperatures T < 0.7K the magnetization approaches within about 3 hours (~10* sec)
the equilibrium value ... For the measurements in zero field M.. = 0 and for H,r, = +100
Oe the equilibrium value is about M., = M,/10.

* That means the current is constant and the superconducting shield cooled again.
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Figure IV.2.2.2: A series of relaxation measurements on a powdered sample in zero field. For lower

temperatures the relaxation becomes slower. For temperatures below 0.4K the relaxation curves are
superimposing, i.e. the relaxation is temperature independent.
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Figure IV.2.2.3: A series of relaxation curves of a single crystal in an external field of +100 Qe.
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The figure [IV.2.2.4] show both sets of relaxation curves in one plot from 0.5K to 0.9K.
Beside the offset in the equilibrium value due to the external field the relaxation curves look
very similar and are in fact well fit by the same functions with similar fitting parameters.

—e—single crystal H = +100 Qe ] o 7
o powdered sample H = 0 Oe ]
= 40 — 0 ] 0,6 Z
=
e 1 %
“ | 0,5 E
%’Q 30 ~
o I S 1 2
g %1 0.4 23
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Figure IV.2.2.4: A comparison between the relaxation curves of a powdered sample and a single crystal. Besides
the scaling and the offset due to the external ficld the relaxation curves are very similar.

The relaxation curve for 1K and 0.9K can be well fit by a single exponential function

M(t)y= M, exp(—t/T). (1,1Iv.2.2)
For lower temperatures this function doesn’t fit the data anymore. The relaxation curves
below 0.8K are reasonably well fit by a stretched exponential

M) = Myexp(—(t/7))  (2,1V.22)
where B < lis a new dimensional-less fitling parameter. In the figures [IV.2.2.5] and
[IV.2.2.6] fits of the data to a stretched exponential function are presented. Figure [IV.2.2.5]
shows that the fit works reasonably well but doesn’t fit perfectly the data. We can improve the
fit for longer times by including the equilibrium value M.. to the fitting function

M) = M, + (M, + M_)exp(-¢t/7f).  (3,IV.22)

We can see that the fit is much improved by this additional parameter and that the parameters
are changing slightly. The relaxation time 7 is changing by a factor of 2 and the exponent f§ by
20% to 30%. Figure [IV.2.2.6] show the fit on a log M vs. ¢ -plot.
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Figure 1V.2.2.5: Semi-logarithmic plot of two stretched exponential fits to a relaxation curve of a powdered
sample at 70mK. The fit that takes into account a none-zero equilibrium value M. matches better the data.

The relaxation series show also that we are always missing the beginning of the
-relaxation. This comes because the first measurement can only be done some time after the
external field has been settled, typically ~ 20 — 30 sec. In addition, the relaxation may start
before the target field is reached, i.e. during the change in the magnetic field, These effects
are especially pronounced at high temperatures. If we fit the relaxation curves with a single or
a stretched exponential function, we find that for the extrapolation to ¢ = 0, the initial
magnetization My is not the same. The temperature dependence of Mj and M.. is show in
figure {IV.2.2.7]. These data are for the powdered sample in zero field. This figure shows that
for temperatures below 0.5K the relaxation curve extrapolates to the same initial
magnetization value M,. For higher temperatures the relaxation starts even before we are
beginning with the measurements and M, is constantly decreasing for higher temperatures.
The equilibrium value M.. is zero for temperatures higher than 0.7K as we expect.
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Figure IV.2.2.6: Semi-logarithmic plot of a series of relaxation curves of a powdered sample in zero field. The
dashed lines are fits of stretched exponential functions to the data with M, # 0.
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Figure 1V.2.2.7: The fitting parameters M, and M., as function of the temperature for a powdered sample in zero
field.
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The relaxation time resolved by fitting the data to a stretched exponential with M.. =0
are shown in figure [IV.2.2.8]. In this plot we present only the data down to 0.4K
(=2.5 K™, i.e. the region where the relaxation is still temperature dependent. For high
temperatures we have added the ac-data as discussed before. We see that the determined
relaxation times for both methods match perfectly and have the same values®in the small
overlapping region around 1K.
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Figure TV.2.2.8: The relaxation time T versus the inverse temperature 1/T. The characteristic times obtained by
ac-methods match the relaxation times obtain by dc-relaxation measurements in a small temperature range
around 1K.

The temperature dependence of 8 is shown in figure [IV.2.2.9]. For high temperatures
we expect =1 as we have observed at 1K and 0.9K for the powdered sample. This means
that the relaxation curve is single exponential in this temperature range. For temperatures
below 0.4K the parameter 8= 0.4 is constant as is the relaxation time, 7= 10? sec.

* Note that for the dc-data Ty, 18 the fitting parameter of the stretched exponential and for the ac-data T,.=2m/f
with f the frequency of the measurement.
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Figure 1V.2.2.9: The relaxation time 7 and the parameter f versus the inverse temperature 1/T. At high
temperatures we expect that S= 1.0 as observed for 1.0K and 0.9K while the relaxation time is roughly
following the Arrhenius law. At temperatures below 0.4K B and 7 stay constant with B = 0.4 and 7= 6x10* sec.
In a small intermediate temperature range In 7 ~ 1/f%

Magnetic Viscosity

The magnetic viscosity is a helpful tool to study the relaxation data. The magnetic
viscosity is defined as
dM(r)
din(?)’
We calculated the magnetic viscosity of the relaxation data of the powdered sample, figure
[1V.2.2.2]. The resulting plot of S(7) is plotted in figure [IV.2.2.10].

The relation between the relaxation curve M(?) and S(f) is comparable to the relation
between ’(w) and %"’ (w). Assuming the Debye model, i.c. only one single relaxation time is
present in the sample, the equation for the real and imaginary part of the susceptibility as
function of the frequency is give by

1
(W)= ———=y (2,IV.2.2
X (W) 1+w2f?_x ( )

S(t)=

(1,IV.2.2)

. wT
X' (@)= PO x-(3,IV.22)

In general the relation between the real and the imaginary part of the susceptibility is

given by the Kramers—Kronig-Relation. In this simple case the relation can be given by
A 2" (w). (4,1V.2.2)
dlnw

This equation is equivalent to the definition of the magnetic viscosity taking into account that
¥’ () as given in equation (2, IV.2.2) is the Fourier-transform of an exponential function.
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Figure 1V.2.2.10: Magnetic viscosity of the relaxation curves for the powdered sample in zero field. The
maximum of S(¢) in this plot corresponds roughly to the inflexion point of the relaxation curves.

We can thus argue that a kind of analogy exists in terms of frequency (ac-measurements) and
time evolution (dc-measurements, thus the relation between

M(t) < S() (5,Iv.2.2)
is comparable to the relation between

X (@ e 7 w). (6,1V.2.2)
As for the ac-susceptibilities, see section [IV.2.1], is the maximum of $(7) near the inflection
point of M(¢). If we compare the maxima of the curves in figure (1V.2.2.10] (%use(T)) to the
relaxation times obtained by fitting the relaxation curves to a stretched exponential function
(Tsrerct(T)) we find that they are identical, see figure [IV.2.2.11].
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Figure IV.2.2.11: A comparison between the relaxation times obtained by fitting the relaxation curves to a
stretched exponential function with M., = 0 and the maxima of the magnetic viscosity. In this small intermediate
temperature range both methods give the same result.
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Field dependence

The field dependence of the relaxation time is shown in figure [IV.2.2.12] for the
temperature range of 4.2K to 0.4K. The field effects are only shown for the de-relaxation
measurements. It is remarkably that the ficld dependence of the relaxation time is not
monotone. The sample is saturated in a positive field of a few tesla. If we let the sample relax
in an external field of H,y.,» = —1 kOe the relaxation is orders of magnitude slower than in
zero field. If we further increase the field in which the relaxation takes place to a value Hexrern

= —2.35 kOe the relaxation is orders of magnitude faster compared to the relaxation in zero
field or in a field of -1 kOe.
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Figure 1V.2.2.12: Field dependence of the relaxation time for temperatures below 1K. The relaxation time
changes with the field by orders of magnitude. The field dependence is not monotonic. If we change the field to
-1 kOe the relaxation becomes slower for a even larger negative field (-2.35 kOe) the relaxation time becomes
faster than for zero field.

For higher temperatures we observe the same cffect in the hysteresis curve. The
hysteresis curve for a temperature of 1K is presented in figure [IV.2.2.13]. This figure shows
two hysteresis curves at the same temperature but measured with different sweeping rates of
the field, 1.4 Oe/sec and 48.5 Oe/sec. First we see clearly a superparamagnetic hysteresis
effect: The area of the hysteresis curve depends on the sweeping rate. At a fixed temperature
the relaxation time of a superparamagnet is 7(7,H) as e.g. given by the Arrhenius law. Thus if
the sweeping rate of the ficld is fast compared to the time scale of the relaxation time at this
temperature the sample cannot follow the field change and stays during the whole hysteresis
curve in a non-equilibrium state. In this case the hysteresis curve has a large area as for
example the curve for a sweeping rate of 48.5 Oe/sec. The slower the sweeping rate the more
time the system has to approach equilibrium and consequently the area of the hysteresis curve
is smaller. In the theoretical case of an infinitely slow sweeping, rate the system can reach the
equilibrium and the hysteresis curve will be closed and reversible.
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Figure IV.2.2.13: Hystersis curves at 1K. The hysteresis shows a typical superparamagnetic effect. The area of
the hysteresis depends on the sweeping rate. The faster the field is changing, the larger is the area. The slope of
the hysteresis curve is modulated. Fast relaxation at 0 kOe and around —2 kQe, slow relaxation at —1 kOe.

The modulation of the slope of the hysteresis curve is remarkable. Starting with a flat
slope near the positive saturation field the slope becomes steeper around zero field.
Afterwards, around a field of —1 kOe the slope flattens meaning that the relaxation time
becomes slower compared to the relaxation in zero field. At a field value of about —2 kOe the
slope again becomes steeper thus the relaxation rate is increasing. This is the same effects as
discussed for figure [TV.2.2.12]: fast relaxation around H = 0 kOe and H = -2 kOe, slow
relaxation at H = -1 kOe. This resonant effect is related to crossing energy levels in the spin
system. We discuss this in more detail in the next section on the quantum effects.
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IV.2.3) Fe8, Quantum regime

In the quantum regime, i.e. below a temperature of 400mK, the relaxation is
independent of the temperature and refaxation only occurs via tunneling of the magnetization.
In this regime and at the first resonance the relaxation time is 7 =6 X 10* sec and the stretched
exponential parameter = 0.4. The relaxation curve varies with the shape of the sample but
the parameters of the stretched exponential fit remain approximately the same.

The field effects in the quantum regime are tremendous. The relaxation time change
by 4 orders of magnitudes between a measurement at 0 kOe and -1 kOe! The field
dependence is not monotone but modulated in such a way that we find fast relaxation at
equidistant fields of 2 kOe starting from zero and extremely slow relaxation starting from —1
kQe. This resonant behavior is explained by the energy crossing of the spin levels due to the
Zeemann shift of an external field. If the levels are degenerate tunneling is permitted and the
measured rate is about 107> Hz, i.e. a relaxation time of 10* sec. If the levels are not
degenerate the system is off-resonance and tunneling is suppressed. In this case this system
can still relax via thermal activation but at these temperatures the probability is extremely
low, thus at these ficld values the systems has a relaxation time of about of about 10% sec!

Sample shape effects

The sample shape has an influence on the relaxation curve as shown in figure
f[IV.2.3.1]. We measured a long sample®, a spherical sample, and a flat sample. Since the
relaxation curve of the long sample resembles the one of the powdered sample, it seems that
most of the micro-crystals in the powder have the same shape as the long sample. The long
sample was measured as grown and had basically smooth surfaces, while the flat sample is cut
from a long sample, and the spherical sample was obtained from milling a large single crystal.
The spherical sample and the flat sample have rough surfaces due to their production process.
We believe that this will have an effect on the relaxation behavior since the local field
distribution governs the relaxation process and a rough surface gives rise to strong in-
homogeneities in the demagnetization field.

The fitting parameters to the curves in figure [IV.2.3.1] are presented in table
[IV.2.3.1]. It can be seen that the parameters vary slightly from shape to shape.

Shape M, 0 M./ Mm' T ﬁ H applied ang le H corrected
/ [emu/gram} /10% sec / [Oe] o / [Oe]
long 48.1 0.15 3.19 0.46 110 14° 107
sphere 45.1 0.25 2.22 0.35 300 25° 272
flat 39.5 0.20 2.09 0.43 260 37° 208
powder 47.0 0.22 2.93 0.47 0 — 0

Table IV.2.3.1; Parameters for a stretched exponential fit to the relaxation curve of samples with different
shapes. The measurements where done in the quantum regime but for different external fields H - The fields
were chosen to have the fastest relaxation after saturation in a strong positive field, i.e. at the center of the first
resonance.

4 The long sample has an aspect ratio of 1.0: 0.5 : 0.7.
The flat sample has an aspect ratio of 1.0:2.9: 3.6,
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The expected value for the saturation is M, = 49.6 [emu/gram]. The fact that we measure a
smaller saturation value may be due to mis-alignment of the sample and no corrections have
been made for diamagnetic contributions. We estimate the angle o by M= My cos(c). Due to
this mis-alignment the applied field is not the same as that parallel to the easy axis. We have
therefore corrected the field value by the same amount Hiomected = Happlica cos(t). The
equilibrium value of the relaxation is non zero for all sample shapes even for different field
values at a value of about M.. = 0.2 M,,,. The relaxation time is of the order of 7 = 3x10° sec
compared to 7= 6x10" sec if we set M.. = 0 for the stretched exponential fit. The parameter 8
of the exponent is in all cases about 8= 0.4.
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Figure IV.2.3.1: Relaxation curves in the quantum regime for different sample shapes. The curves are slightly
different but the fitting parameters of a stretched exponential function do not vary appreciably, see table
[IV.2.3.1).
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In figure [I'V.2.3.2] one of the main result of our studies is presented. It shows the
dependence of the relaxation time as a function of the temperature and the external field for a
powdered sample. For the dc relaxation measurement the sample was first saturated in a
positive field > +3 tesla. At high temperatures the data lie roughly on a straight line indicating
that the relaxation is thermally activated and obeys the Arrhenius law. For lower temperatures
the relaxation deviates from the Arrhenius law and becomes gradually faster than expected for
a thermal activated process. Below about 0.4K the relaxation time is independent of
temperature but depends strongly on the external field. At —1 kOe the relaxation time is
slower by 4 orders of magnitude compared to the relaxation in zero field. If we increase
further the field to about —2 kOe the relaxation time becomes faster again. At this field value
the relaxation time is faster by 2 orders of magnitude compared to a relaxation in zero field
and 6 orders of magnitude faster compared to a relaxation in a field of —1 kOe!
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Figure 1V.2.3.2: Relaxation time survey for a powdered Fe8 sample as function of temperature and field. Below
0.4K the relaxation time becomes temperature independent. In this quantum regime the relaxation time varies
strongly and non-monotonically with the field.
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Three examples of relaxation curves taken with different fields in the quantum regime are
presented in figure [IV.2.3.3]. These curves are from measurements on a single crystal at a
temperature of ISOmK The fit to a stretched exponential function gives the following
parameters: 7= 3.1x10* sec, § = 0.47 in +100 Oe, 7= 10® sec in a field of —1 kOe, and 7=
4.5x10° sec, B = 0.42 in a field of —2 kOe. Thus the relaxation time varies strongly with
external field and the parameter § also varies slightly with field. Due to general difficulties of
fitting a stretched exponential function the variation in  might be artificial due to the fitting
algorithm. The fit to the curve at —1 kOe is not reliable because the change in the
magnetization is too small and we set = 1. The relaxation times of the single crystal sample
are about the same as for the powdered sample with M_ # 0. The interaction between the
crystals in the powder and their arbitrary orientation does not change appreciably the
behavior.
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Figure IV.2.3.3: Relaxation curves of a single crystal for different field values at a temperature of 150mK.
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If we look closer at the field dependence of the relaxation around zero field we find
that the relaxation is faster at a field of +80 Oe compared to a relaxation in 0 Oe after
saturating the sample in a strong positive field. For a field value that is slightly larger, +180
Oe, the relaxation becomes slower again. This result is surprising since the internal field of
the sample including the demagnetization field is always positive, see annex III. Thus we
would expect that we need a negative external field to counterbalance the effect of the
demagnetization field to bring the system into resonance, contrary to what we observe.
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Figure IV.2.3.4: Relaxation curves of a powdered sample at different small field values around zero.
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Resonant Quantum Tunneling

In figure [IV.2.3.5] we present a schematic view of the resonance effect in this system.
This general idea was first proposed by M. Novak based on high temperature measurements
on the Mnl2ac-system [Novak 95b]. On the left hand side the level scheme of a molecule in
zero field is shown. All of the levels are in resonance and tunneling is permitted between any
of the states. If the molecule experience a magnetic field the energy levels will shift due to the
Zeeman energy as shown on the right hand side of the figure. If the energy levels are not
degenerate then tunneling between them is strongly supressed. The natural resonance width is
given by the tunnel splitting of degenerate levels. From the theories, e.g. of van Hemmen and
Siitd, we can estimate that the resonance width should not exceed 10™ Oe! That means any
field larger than this value will suppress tunneling effects and block the system.

in resonance off resonance

Figure TV.2.3.5: Scheme of rescnance effects. If the spin states are degenerate tunneling is permitted. In the
presence of a magnetic field the levels shift. If the levels are not degenerate tunneling is suppressed.

The dependence of the energy levels of Fe8 on the magnetic field is shown in figure

[IV.2.3.6]. These energy levels have been calculated for a Hamiltonian of the form
A=-D§ +E/2(§3 +§_2)— gty H . (1,1V.2.3)

The technical details are discussed in the annex I. In zero field all levels of same modulus ||
are degenerate (up to the tunnel splitting A) and tunneling is permitted. If the field is increased
levels of different signs separate and tunneling is suppressed if the energy difference is larger
than the tunnel splitting. At a field value of about 2 kQe the levels cross again but this time
between the states m and —(m—1). If the field is further increased the levels separate again until
the field reaches a field of 4 kOe and so on. The system thus shows a resonance as a function
of field, at values separated equidistantly by AH = 2 kQOe. At each resonance ficld, af/ states
are degenerate, and in resonance, see section I1.2.
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Figure IV.2.3.6: Dependence of the Fe8 spin levels on the magnetic field. The levels cross at field values of 0
kOe, 2 kOe, 4 kOe etc. At these field values tunneling is permitted within +A.,., the tunnel splitting. Between
these values the system is blocked, scc annex L

Figures [IV.2.3.7] and [1V.2.3.8] show hysteresis curves at different temperatures. The
hysteresis curves in figure [IV.2.3.7] were taken at a sweeping rate of 48 Oe/sec and for fields
in the range of +7 kQOe. This field is not sufficient to saturate the sample. We therefore had to
apply a field of +7 kOe and heat the sample to about 1.5K and field cool the sample in order
to saturate. For the same reason, these curves only present minor hysteresis curves.

Tt can be seen that the hysteresis curve opens with lower temperature and is not closed
even at a temperature of 1.3K at this field sweeping rate. The opening of the relaxation curve
reflects the increase of the relaxation time and the system is not in equilibrium at any point of
the curve. Below 0.4K the hysteresis curves superimpose due to the temperature
independence in the quantum regime.

At every temperature the hysteresis curve shows a non-monotonic modulation of the
slope. The slope is flat at fields of about 1 kOe and 4 kOe and steep at fields of about 3 kOe
and 5 kOe. In the region with a steep slope the system is in resonance and the tunneling rate
high. In the region with a flat slope the system in off resonance and blocked. These field
values do not correspond to the theoretical values or to the measured field values from the
previous discussed relaxation in the relaxation measurements because of a mis-alignment of
the crystal. Since the easy axis is not exactly along the field direction (but off by an angle )
only a fraction of the field value is contributing to the Zeeman energy shift
Hyaraite1 = Hpeta €05(Q).

In figure [1V.2.3.8]" the hysteresis curve was measured at a higher sweeping rate of
140 Oc/sec. The setup used for these measurements is capable of reaching field values of 14
kOe. In this figure 5 steps in the hysteresis curve can be seen. Again the curves for
temperatures below 0.4K are identical and the resonance steps are present at all measuring
temperatures,

! These hysteresis curves where made in collaboration with Wolfgang Wernsdorfer at the Laboratory Louis Néel.
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Figure 1V.2.3.7: Hysteresis curves of a micrometer sized single crystal. At all temperatures resonance effects can
be observed. These measurements were made using a microSQUID system.
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Figure IV.2.3.8: Hysteresis curves of a micrometer sized single crystal. In the quantum regime 5 resonance steps
can be seen.
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The derivative of one branch of the hysteresis curves d/ dH is roughly proportional
to the relaxation time. During the short time of #peqs.e the field can be assumed as being fixed.
If the relaxation is stretched exponential

M(1) = Myexp(~(t/ T(H)P™).  (2,1V.2.3)

the derivative with respect to the field # gives

M _[ BUD 1) [ oo | 4PCD) (fm ﬁ(H)M(t ). (3,1V.2.3)
dH T(H) dH T(H) dH T(H) measure / * \? e

Assuming that the variation with field of S(H) is rather small we can conclude that

M ( 1 Jﬂ”’”“ dt(H)

dH \ t(H) di
In the figures [IV.2.3.9], [IV.2.3.10], and [IV.2.3.11] the derivation is shown for different
sweeping rates for a powdered sample and a single crystal respectively. In figure [IV.2.3.9]
we can sce three peaks equidistantly spaced by 2 kOe corresponding to 3 resonances. In figure
{IV.2.3.11] the numerical derivative of a measurement on a microSQUID is shown. In this
figure we can see 5 resonances almost equidistantly spaced. From figure [IV.2.3.10] taking
only account of the first resonance we can estimate the width of the first resonance to be 200
Oe to 300 Oe. The faster the sweeping rate the more pronounced is the peak and in all cases
the peaks are skewed to the left, i.e. towards the direction of the field sweeping. This
resonance width is orders of magnitude larger than expected from the theory.

. (4,1V.2.3)
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Figure IV.2.3.9: One branch of a hysteresis curve and its derivative with respect to the field. The derivative
shows 3 resonance peaks.
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Figure IV.2.3.10: One branch of a hysteresis curve made at different sweeping rates on a single crystal. The
derivative shows the first resonance. The resonance has a width of about 200 Oe to 300 Oe.
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Figure 1V.2.3.11: Numerical deviation dM/dH of a branch from a hysteresis curve measured in the quantum
regime at 50mK and a sweeping rate of 140 Oe/sec, see figure [IV.2.3.8]. The figure clearly shows 5 resonances
that are equidistantly spaced by about 2200 Oe. The measurement was made with a microSQUID on a

micrometer sized single crystal.
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One problem with estimating the resonance by this method is that the sample relaxas
continuously during the field sweep of the resonance. Thus when we are reach for example
the center of the resonance, a major fraction (depending on the sweeping rate) of the spins are
already turned. In a way by this method we are “summing up” the relaxation within a
resonance while passing through it.

A much better and more quantitative method to measure the resonances in shown in

the 4 figures [IV.2.3.12], [IV.2.3.13], [IV.2.3.14], and {IV.2.3.15]. The measurement method
for these plots is the same as for our relaxation measurements. We first saturate the sample in
a large field and after a fast field change we let the sample relax for 180 seconds in the
predetermined field H. We repeat this procedure many times for different field values from
H=+0.8kOe to H=-4kOe. The ficld differences between these measurement is about
AH =50 Oe. Every vertical line in these figures represent one relaxation measurement and the
points of the line are the measured values of the magnetization. If the sample is in resonance
the relaxation is fast and the magnetization changes a lot. If the sample is off resonance the
relaxation is slow and the magnetization stays almost constant during the 180 sec of the
measurement.
At the first resonance and especially at the second resonance we can sce that the first
measurement is not at the saturation value. Before the target field is reached starting from the
saturation field and the first measurement can be done some time is needed. During this time
the sample might already start relaxing especially in the center of a resonance.

The difference between these figures is the shape of the single crystal. The sample for
the figures [IV.2.3.12] and [IV.2.3.13] are two different long single crystals as grown. The
sample of the figure [[V.2.3.14] is spherical, and for the figure [IV.2.3.15] flat. The 4 figures
clearly show the first two resonances and figure [IV.2.3.12] also a part of the third resonance.
All samples have a first resonance around zero but with different maxima, i.e. the center of
the resonance, depending on the shape. The field values for the centers are: longl
Hoyoner = +80 Oe, long2 Hiemer = +100 Oe, spherical Heener = 7230 Oe, and flat
H,oner = +200 Oe. This is not in the order we would expect due to the demagnetization field.
The demagnetization factor orders as Niong < Niphere < Nyar. The field values of the centers
orders as Hiong < Hpar < Hsphere. The center of the second resonance is at about -2 kOe as
expected. The second center for the spherical sample at about —2.5 kOe and for the flat sample
at about —2.8 kOe. The large deviation of the center of the second resonance from the
expected value was due to misalignment of these samples. When we correct the resonance
fields by the angles we have estimated in table [IV.2.3.1] we get: longl Heemer = +78 Oe,
long2 Heener = +97 Oe, spherical Heener = +208 Oe, and flat Heper = +160 Oe.

Even with this more elaborate method, the samples have about the same resonance
width as derived above. For all samples the first resonance has a width of 100 Oe and the
second resonance of about 500 Oe up to almost 1 kOe for the spherical and the flat sample.
Again the fact that the last two samples were not well aligned give rise to an apparently larger
resonance. It is therefore reasonable to assume the second resonance has a resonance width of
roughly 500 Oe.
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Figure 1V.2.3.12: Multi-Relaxation-Scan at different field values in the quantum regime. The sample is a single
crystal with a long shape (longl).

50 T [ |
R
45 - N —
= 40 |- -
g
i
20 35 |- Heelax max=+100 Oe _|
fos
g
S_: 30 I _
20 [~ T=70 mK
15 | L | |
-0.4 -0.3 -0.2 -0.1 0 0.1

H [tesla]

Figure IV.2.3.13: Multi-Relaxation-Scan at different field values in the quantum regime. The sample is a another
single crystal with a long shape (long2).
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Figure IV.2.3.14: Multi-Relaxation-Scan at différent field values in the quantum regime. The sample is a single
crystal with a spherical shape.
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Figure 1V.2.3.15: Multi-Relaxation-Scan at different field values in the quantum regime. The sample is a single
crystal with a flat shape. '
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IV.2.4) Fe8, Discrepancies

Pioneering theories for magnetic quantum tunneling based on isolated giant spins have
been proposed during the last 20 years or so [Korenblit 78, Hemmen 86a, Enz 86, loselevich
87, Garanin 91]. (Very recently theories have been developed which include environmental
effects, such as phonons [Villain 94] and nuclear spin interactions [Prokofev 98]). In
comparison to an isolated giant spin several experimental facts are not in agreement with
theory.

We believe that taking into account the dipole fields generated by the molecular spins
can solve these discrepancies. The local field distribution is of the order of 100 Oe to 500 Qe,
thus the same as the observe resonance width in the experiments, see chapter [V.1]. The non-
exponential relaxation can be understood in the same terms as discussed in chapter [V.2] , see
also [Prokof'ev 98]. Finally, the long relaxation time is also discussed in the chapter [V.2].

Three Discrepancies:

— The observed resonance width is too large

Existing theories, .g. [Hemmen 86a, Enz 86, Garanin 91, Dobrovitski 97], give rise to
an estimated tunnel splitting of the order of 10K corresponding to a resonance width of
10°-10"* Qe. Such a small resonance width would make experimentation very difficuit. The
effect of hyperfine ficlds can give rise to an effective broadening of the resonance of Ie8
[Prokoflev 98] but still the resulting resonance width shouldn't exceed a few Oersted for Fe8.
All measurements show a resonance width of the order of about 100 Oc and .

—  The relaxation curve is non-exponential
The relaxation for non-interacting, identical particles should be single exponential
M(t) e exp(~t/T) ( which is the case at high temperature). However, for Fe8 the data in the

low temperature regime are best fit by a stretched exponential M(r)ocexp(—(t/’z:)ﬁ)

[Sangregorio 97], which poses the problem of interpreting what 7 corresponds to (at best it
may be considered as an effective or average relaxation time).

A stretched exponential fit is typical for disordered systems such as spin-glasses or a
system with a distribution in the size or orientation of the magnetic particles, sce annex V, and
at first seems a surprising result for Fe8. Distribution effects can be ruled out because
molecular magnetic crystals are spatially ordered. In addition, the essential ingredients for
spin glass behavior, such as strong interactions and frustration are not present in Fe8.

— The measured relaxation times are too long

Theories of quantum tunneling give an estimate for the quantum tunneling frequency
v for Fe8 of the order of 1 Hertz, e.g. for the Hamiltonian of Fe8, the predicted quantum
tunneling frequency due to the theory of van Hemmen and Siité [Hemmen 86b] reads

E §
VZTEI[EJ (I,IV24)

with 7;' = 2DS/27. Thus for Fe8 we get 7, ~ 107" sec and v ~ 1 Hz. Their theory assumes a

single, isolated giant spin where the WKB-formalism is applied in a semi-classical limit. In a
more recent theory, Prokofev and Stamp [Prokof'ev 98] estimate the relaxation time for a
molecule in resonance (£ =0) as
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28
nT,
where an environment of nuclear spins is taken into account and & is the energy bias due to a
magnetic field acting on the molecule. T, is the energy scale of the nuclear T, processes,
typically 7, ~107 =107 K. The tunnel splitting of the lowest states |S.|=10 is estimated to
be of the order of A, ~10" K. Thus the relaxation time for Fe$ is in the range of
Ty ~0.1-10 sec. The measured relaxation times are of the order of 10* seconds for Fe$8

THE=0)= (2, TV.2.4)

[Sangregorio 97] thus off by 4 orders of magnitude.
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Chapitre IV Section 3

Autres Aimants Moléculaires

IV.3.1) Fed 91
V.3.2) Fel7+Fel9 95
IV.3.3) Mnl1l 99

In the following sections [IV.3.1], [TV.3.2], and [IV.3.3] we take a small diversion.
During the course of my thesis work, I had the opportunity to measure many different
molecular magnetic systems. We show here that Fe8 is quite extraordinary (as well as
Mn12ac which is not a subject of my studies). Most compounds for various reasons do not
show clear quantum effects. The following are three examples (Fed, Fel7Fel9, and Mnl1) of
molecular magnets that we have measured. '

1V.3.1) Fe4

The structure of a Fe4 molecule is presented in figure [IV.3.1.1]. A central Fe-ion is
bond to three peripherial Fe-ions via u-OMe double bridges. The sample has a small
anisotropy barrier of 2.6K. Due to the small energy barrier the observed characteristic time is
rather short even below 1K. In the accessible temperature range only thermal activation was
observed roughly following the Arrhenius law. The ac-susceptibility as function of the
temperature has two peaks. One peak indicates a superparamagnetic behavior the second peak
is frequency independent over 3 decades. We can give no interpretation of the second peak.

Figure IV.3.1.1: Schematic view of the Fed-molecule. 3 Fe-ion are bond via u-OMe double bridges to the central
Fe-ion, Fel.
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The magnetization curve of Fe4 is shown in figure [TV.3.1.2]. At low temperatures the
sample starts saturating at about I kOe. These measurements where done with the uSQUID-
system and only relative measurements are possible. We therefore can not determine the total
spin of the molecule from this measurement. In the inset we can see that the magnetization
does not scale with H/T as would be for a paramagnet.

1z T T T T T T T

flux (¢/dg)
T

-3l
Stos &

L o &0 100
11 [l 1 ] T [mT/K}

-400 -300 -200 100 @ 100 200 300 400
HT [mT/K]

Figure IV.3.1.2: Magnetization curves for different temperatures of a Fed micrometer-sized sample. The inset
show that the magnetization curve is not scaling with H/T.

AC-susceptibility measurements at a very low frequency shows that the Curie-Weiss
law is obeyed even below 1K (down to about 0.3K) though the inverse susceptibility is
slightly curved. Below a temperature of 0.3K the inverse susceptibility starts deviating from
the Curie-Weiss law. From this small temperature range we can roughly estimate a Weiss
temperature of © < 0.1K. These measurements were made using the low field ac-SQUID-

magnetometer.
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Figure 1V.3.1.3: Temperature dependence of the ac-susceptibility for a frequency of 0.005 Hz. The inverse
susceptibility is slightly curved but down to 0.3 K the Curie-Weiss law is obeyed. Below 0.3 X the deviation is
growing,
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The ac-susceptibility for different frequencies is presented in the figures [IV.3.1.4] and
[IV.3.1.5]. Tt is remarkable that we observed two peaks in the real part and the imaginary part
of the susceptibility. One of the peaks shifts with lower frequencies to lower temperatures as
expected for a superparamagnet. The second peak in almost frequency independent over 3
decades, 0.5Hz — SO0Hz. At a frequency of 0.005Hz we did not observe the second peak in

our temperature range.
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Figure 1V.3.1.4: Real part of the ac-susceptibility of a powdered Fed-sample. The susceptibility has two peaks,
one that is shifting to lower temperatures for lower frequencies and one that doesn't shift at all.
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Figure IV.3.1.5: Imaginary part of the ac-susceptibility of a powdered Fe4-sample. The imaginary part has two
peaks: One is frequency dependent and the other is almost frequency independent over 3 decades.
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The temperature dependence of the first peak is shown in figure [IV.3.1.6]. It is difficult to
determine the exact value of the peak because of interference with the second peak. The data
obeys the Arrhenius law in good approximation. From the Arrhenius law we found a barrier
height of A = 2.6K and a prefactor of 7y = 6 x 10°® sec. The value of % is surprisingly large,

| | ] | |
1 1.5 2 2.5 3 3.5 4
1/7T, [K-1]

Figure IV.3.1.6: Temperature dependence of the first peak. The Arrhenius law is obeyed in good approximation.
We found an energy barrier of A =2,6K and a prefactor of 7, = 6 x 10" sec.
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1V.3.2) Fel7Fel9

The system Fel7Fel9 consists of two different molecules of 17 and 19 iron-ions that
are relativly close to each other. A plateau in the ac-susceptibility is observed which
complicate the interpretation of the data.

The hysteresis curve is shown in figure [IV.3.2.1]. The measurement was done on a
powdered sample at 100mK. The sample starts saturating at about 3 tesla with a saturation
magnetization of 70s per unit cell. The total spin per unit cell is thus § = 35. Since each unit
cell contains two molecules of different size we cannot determined the net spin of the
individual molecule Fel7 and Fel9 respectively. The sample shows hysteretic behavior with a
coersive field of about 600 Qe and a remnant magnetization of about 18us.
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Figure I'V.3.2.1: Hysteresis curve of a powdered Fel7Fel19-sample at 100mK,

The zero field cooled / field cooled (ZFC/FC) measurement are shown in figure [1V.3.2.2].
The measurement was done in a field of 25 Oe. It is noteworthy that the zero field cooled
curve is peaked at 1K. :
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Figure 1V.3.2.2: Zero field cooled / field cocled measurement on a powdered sample in a field of 25 Qe
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The inverse susceptibility in figure [IV.3.2.3] is curved and then constant below 1K. The
positive intercept on the 7-axis of the high temperature data indicates the presence of
ferromagnetic interactions.
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Figure I'V.3.2.3 Tnverse susceptibility of a powdered sample measured in a field of 25 Qe.

In figure [IV.3.2.4] ac-measurements are presented. The peak is smeared out to a plateau that
might be interpreted as one peak fixed at a temperature of about 1.5K that superimpose with a
peak that is shifting with decreasing frequencies to lower temperatures. However such a
plateau in the susceptibility complicates further analyses.
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Figure IV.3.2.4: Real part of the ac-susceptibility of a powdered sample.
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The maximum position of the susceptibility versus the frequency (the corresponding
characteristic time) is shown in figure [IV.3.2.5]. These data are not well fit by a Arrhenius
law but by the Fulcher-law
A
. 1,IV.3.2
TJ ( )

(T =1,ex
(T)=1, p(T_O

From the fit we found a barrier height of A = 4.8K, a prefactor of 7 =6 x 10 sec, and a
T() =0.7K.
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Figure 1V.3.2.5: Temperature dependence of the characteristic time fit by a Fulcher law.
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1v.3.3) Mnll
~ The Mnll sample consist of a Mnl0 molecule, with 10 manganese ions tightly
coupled, and an additional uncoupled manganese ion.

The magnetization curve up to 1 tesla is plotted in figure [1V.3.3.1]. This measurement
was make on a single crystal at a temperature of 80 mK. The crystal had to be stored in a
solvent to prevent it from decomposition. The sample is almost saturated at 1 tesla with a
saturation value of 30 pg. The uncoupled manganese ion (S = 5/2) contributes a magnetization
of 5pg thus Ieaving 25up for the Mn10 molecule, i.e. § = 12.5; see [Goldberg 95, Canschi 98].
Due to the solvent an error in the mass of some percent is possible thus a spin of S =12 as
reported in [Canschi 98] is possible. The hysteresis curve has a coersive field of about 250 Oe
and a remnant magnetization of about 16 ps.
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Figure IV.3.3.1: Hysteresis curve at 80mK of a powdered Mn11-sample.

The zero field cool / field cool (ZFC/FC) measurement are shown in figure [IV.3.3.2]. The
measurements were done in a field of 30 Oe.
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Figure 1V.3.3.2: Zero field cooled / field cooled measurement on a powdered Mn1 1-sample in a field of 30 Oe.

An extrapolation of the linear part of the inverse susceptibility, i.e. the part that obeys the
Curie-Weiss law, is pointing to a negative Weiss temperature, which implies the presence of
antiferromagnetic interactions.
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Figure IV.3.3.3: Inverse susceptibility at a very low frequency of 0.005Hz. The measured curve is typical for the

presence of an antiferromagnetic interaction below 0.3K.

In the figures [IV.3.3.4] and [IV.3.3.5] measurements of the ac-susceptibility are shown for
frequencies from 0.005Hz to 525Hz. As expected the blocking temperature decreasing for
lower frequencies but surprisingly the height of the peak of the imaginary part also decrease,
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figure [IV.3.3.5]. It seems also that for the lower frequencies the peak of the imaginary part is

not symmetric as for high frequencies.
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Figure IV.3.3.5: Imaginary part of the ac-susceptibility. Surprisingly the peaks decrease in size for lower
frequencies.
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The temperature dependence of the peak is shown in figure [IV.3.3.6]. The data are
reasonably well fit by a Arrhenius law and we found a barrier height of A=6.2K and a
prefactor of 7y = 8 x 1071 sec,
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Figure IV.3.3.6: Temperature dependence of the imaginary part of the ac-susceptibility obeys reasonably well the
Arrhenius law. The barrier height is A = 6.2K and the prefactor 7, = 8 x 107 sec.
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Chapitre V

Le Champ Local
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V.32) Simulations Monte-Carlo 137
V.33) Mesure de ’Effet des Corrélations 143

Afin de mieux comprendre I’influence de la distribution du champ local nous avons
effectué des calculs numériques. Dans ce chapitre nous présentons principalement des calculs
sur le systéme Fe8 et quelques-uns sur le systéme MnlZ2ac.

Dans la section V.1 nous présentons les détails techniques de ces calculs. I est
nécessaire de faire une distinction entre le champ dipolaire et le champ local. Le champ
dipolaire est le champ magnétique créé par tous les spins dans un échantillon ; il varie de
position & position et méme & I’intérieur d’une molécule. Le champ local est directement lié
au décalage d’énergie d’un spin géant. Ce champ est seulement défini par rapport a une
molécule et les positions de ses spins ioniques.

Nous avons calculé la distribution du champ local pour un échantillon dont tous les
spins sont paralléles, ce qui correspond a la distribution initiale d’une expérience de
relaxation. Ensuite nous avons étudié la distribution dans un cas ou les spins sont retournés de
maniére aléatoire. Nous observons une forte influence du réseau triclinique sur la distribution
du champ local.
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Dans la section V.2 nous présentons des résultats expérimentaux qui montrent
Vinfluence du champ local sur la relaxation. Le début d’une courbe de relaxation suit une loi
en racine carrée du temps. Ce comportement est prédit par la théorie de Prokov’ef et Stamp
prenant en compte ’interaction dipolaire entre les molécules et les effets hyperfins a
Pintérieur d’une molécule. Ensuite nous présentons un modéle phénoménologique simple qui
déerit bien la courbe de relaxation sur 4 décades en temps. Dans ce modéle nous supposons
que la résonance quantique d’une molécule est trés étroite, de 4 a 5 ordres de grandeur plus
petite que la largeur de la distribution du champ local. En conséquence, seule une petite
fraction des spins est en résonance. La plupart des molécules sont hors résonance et ne
peuvent pas participer & la relaxation. Nous supposons que la distribution du champ local
¢volue pendant la relaxation. Le nombre de molécules en résonance diminue au cours du
temps, avec pour effet que la relaxation se ralentit. Pour cette raison, la courbe de relaxation
ressemble 4 une fonction exponentielle étirée. Une autre conséquence de cet effet est que nous
n’observons pas le taux d’effet tunnel quantique 7,,,, dans les expériences mais un temps de

relaxation effectif 7, . Le rapport entre le taux effectif de relaxation et le taux d’effet
tunnel quantique 7, .-/ T, ~ 6 /A, ale méme ordre de grandeur que le rapport entre la

largeur de la distribution du champ local o et la résonance quantique d’une seule molécule
Apmet © O A0y ~10* —10%. De cette fagon nous pouvons également comprendre pourquoi

nous observons dans les expériences une résonance avec une largeur de 100 Oe et plus.

Dans la derniére section, V.3, nous discutons P’apparition de corrélations inhabituelles
dans un systéme d’effet tunnel résonant. Autour de la résonance moléculaire, ces corrélations
changent la distribution du champ local. Dans cette région elles diminuent I’amplitude de la
distribution en comparaison avec une distribution aléatoire et encore moins de molécules sont
en résonance que dans un modeéle statistique. Un spin qui tourne change le champ local dans
son environnement proche. Dans une certaine région le changement du champ local est plus
grand que la résonance moléculaire et les molécules dans cette région sont bloquées. Un autre
spin qui tourne dans la proximité d’une telle région va bloquer également des spins voisins,
mais dans une région en commun, si les champs s’opposent, quelques molécules vont peut-
étre se deébloquer. Done le champ local ne détermine pas I’orientation d’un spin, il permet ou
supprime le retournement d’un spin par effet tunnel quantique. Pour une simulation de la
relaxation dans le régime quantique nous utilisons une méthode de Monte-Carlo. A la fin du
chapitre, nous présentons une expérience qui montre clairement les effets des corrélations sur
le champ local. Nous mesurons les temps de relaxation dans la premiére résonance d’un
échantillon demi-démagnétisé pour des champs différents. Pour ces mesures nous préparons
I’échantillon de deux maniéres différentes. Dans un cas 1’échantillon est démagnétisé par
activation thermique et dans I’autre cas I’échantillon est démagnétisé par effet tunnel
quantique. Nous observons que la variation du temps de relaxation en fonction du champ dans
la premiére résonance, est trés différente dans les deux cas. D’aprés la théorie, I'inverse du
temps de relaxation correspond 4 la distribution du champ local. Cette mesure prouve que la
distribution du champ local est fortement influencée par 1’effet tunne! résonant.
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Figure V.1.1.2: Density plots of the parallel component By of the dipole field within one unit cell, The plane is
cut perpendicular to the easy axis. The calculation was done for the central unit cell of a spherical sample of
200A diameter. The central molecule/spin itself has been omitted.
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V.1.1)Numerical Calculations

Dipole field
We calculated the dipole field that is created by the molecular splns We assume that
the spins are point dipoles. The well-known result from magneto-static gives a dipole field for

a spin:
-3 m
0=
where 7 is the spatial vector pointing at the spin and m = gu,s,ié is the magnetic moment of
the spin. The z-component of the spin is s, and pointing along the unit vector #. A molecule
that consist of several ion spins creates a dipole field of

B = 23(r_r)((r D)y

[P -7 Ir-r|

(1, V.1.1)

where N is the number of ion spins in the molecule and 7, = gu, s i are the individual

magnetic moments of the ion spins. We neglect any poss1ble canting within the molecule. The
spatial vectors 7 are the relative positions of the ion spins to the center of the molecule at r.

The relative posmons of the ions of Fe8 for example are given in the table [III.1].

Qur main interest is the dipole field distribution in the quantum regime at low
temperatures. In this case the molecule (S = 10) is in its ground state |S;| = 10. (We will write
the net molecular spin as capital S and the ion spins as minuscule 5). The ion spin
configuration for the ground state of Fe8 is shown in figure [V.1.1.1]. For the up state of the
molecule S, = +10 two ion spins are pointing down (s, = —5/2) and six ions spins are pointing
up (s: = +5/2). For the down state S; = —10 the ions spins are reverse, i.e. six ion spins are
pointing down and two are pointing up.

Figure 1: V.1.1.1: Schematic figure of the up state, S; =+10, and the down state, S; = —10, of a Fe8-molecule.

To calculate the dipole field at the position of a particular molecule we have to sum up
the contributions of all the molecules inside the sample, except the molecule under
consideration

B(®= Y BG,, D (3, V.1.1)

ktm
except one
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where 7., points at a molecule and %, /, m are the indices of the molecule on the lattice, i.e.

Teim =ka+ Ib +m&. The lattice vectors @, b, and & for the triclinic lattice of Fe8 can be

found in chapter [IH]. For Mn12ac the procedure is of course the same but one has to take into
account that the lattice of Mn12ac is body-centered and has two molecules per unit cell.

We made such calculations for Fe8 and Mn12ac for the case that molecular spins are
pointing up and the sample has a spherical shape, see figure [V.1.1.2]. In these images only
the parallel component

B(¥)= B(F)-ii (4, V.1.1)
along the easy axis is shown in a density plot. The easy axis of Fe8 is almost parallel to the
d-axis thus is this case the unit vector is given by # = a/|d|. The Fe8-images display a cut
through the bc-plane of the unit cell for the central molecule of the sphere. The easy-axis of
Mnl2ac is along the crystallographic ¢-axis thus in this case # = ¢/|¢| and the cut is through

the ab-plane. In all images the central molecule itself has been omitted and the next neighbors
in the images are placed at the corners, and at the half of each sideline.

For both molecules we have calculated the dipole field for the case that we take all 8
iron-ions or 12 manganese-ions for Fe8 and Mn12ac, respectively, into account corresponding
to equation (2, V.1.1). We will call this the ion-model. The other two images represent
calculations where we have neglected in inner structure of the molecule and replace the
molecules by one single spin of § = 10 as in a giant spin model. This calculation uses the
equation (1, V.1.1) with S, = +10, we call this the spin-10-model.

The difference between the two models is remarkable. The dipole field is not only
different at the corners of the image close to neighboring molecules but also in the center of
the image. In the case of the spin-10-model the spin of the omitted central molecule is simply
at the center of the images and will not notice the dipole field distribution. This will change
for the ion-model. The molecules have a diameter of about 5A that corresponds to 0.2 in the
displayed units of the images. Even over this range the dipole field distribution is varies and
therefore each ion in the molecule will experience a different field value. Thus at first view it
is no longer evident what value the Zeemann energy shift of the molecular giant spin state
has, e.g. some ion-spins are pointing down and have a negative energy shift while other ion-
spins that are pointing up and will result in a positive energy shift.
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Figure V.1.1.2: Density plots of the parallel component B) of the dipole field within one unit cell. The plane is
cut perpendicular to the easy axis. The calculation was done for the central unit ceil of a spherical sample of
200A diameter. The central molecule/spin itself has been omitted.
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Figure V.1.1.3: Three cuts through the parrallel dipole field By distribution within a Feg-molecule for zero local
field in the ion-model. These curves show the variation of the dipole field along three lines in the bc-plane in the
unit cell as shown in figure V.1.1.2b, compare figure table [V.1.1.2].

Local field
For a single giant spin in the state S; the energy shift due to a magnetic field # is given

by the Zeemann term

e=gu,S,H. (5, V.1.1)
For a molecule with several ion-spins s tightly locked up the total energy shift of the
molecule is given by the sum

N

€= Zgygsf)H(?;). (6, V.1.1)

i=1

Now we have to take into account that the magnetic field H(¥) is different at each ion

position #.

Because we want to discuss the energy shift of the giant spin state in terms of a
magnetic field we introduce the following definitions:

s The parallel dipole field B,(7) is defined as in equation (4, V.1.1), that is the parallel

component of the summed dipole field of all giant spin or ion-spins within the sample, except
the giant spin or ion-spins of the molecule under consideration.

o The local field B is defined as the magnetic field that must act on a giant spin § to result in
the same energy shift due to the Zeemann term as defined in equation (5, V.1.1) or (6, V.1.1),
respectively. Thus the local field is only defined in connection with the molecule, it is the
field acting on a molecule. For the spin-10-model the local field is simply the parallel dipole
field

B= B“'(Fgm”pm) (6, V.1.1}

at the giant spin position 7, For the ion-model the local field 1s defined as

fant spin*
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N ;
25V B ()
i=l

h

z

(7, V.1.1)

Again 7, are the positions of the ion-spins that are in a state s\ and S, is the state of the net

T

N
spin of the molecule, i.e. S, = Zsf’ .

i=1

According to these definitions, a local field value corresponds to the same energy shift
regardless of which model, ion or spin-10, we have employed. In the case of a giant spin of §
=10 a local field of 744.4 gauss corresponds to an energy shift of 1K.

For Fe8 and Mn12ac we have calculated the parallel dipole field for the spin-10-model
and for the ion-model. The values are shown in table [V.1.1.1]. It is surprising by how much
the dipole field values vary within the molecule in the ion-model. In addition, the difference
in the local field calculation between the two models is a factor of 3. For Fe$ the local field
and consequently the energy shift for the ion-model is about three times smaller than for the
spin-10-model, which accidentally for Mn12ac is vice versa.

Note that if we subtract of the local field values, the molecule has no energy shift. For
the spin-10-model the field will in this case be exactly zero, while for the ion-model non of
the ions will see zero field (!) but fields that are varying by 100 gauss and more, see table
[V.1.1.2].

Fe8 Mnl2ac
spin-10-model ion-model spin-10-model ion-model
Spin By spin By spin By spin By spin
I [gauss] S, [gauss] Sy [gauss] S, [gauss] Sy
1 381 10 224 +5/2 107 10 49 -3/2
2 — — 224 +5/2 — — 49 -3/2
3 — — 89 +5/2 — — 49 -3/2
4 . — 185 ~5/2 — — 49 -3/2
5 — — 116 +5/2 — — 153 +2
6 — — 116 +5/2 — — 263 +2
7 — — 187 -5/2 — — 153 +2
8 — — 91 +5/2 — — 263 +2
9 - e - — — — 153 +2
10 — — — — — — 263 +2
11 — — — — — — 153 +2
12 e — — — — — 263 +2
B 381 +10 122 +10 107 +10 303 +10

Table V.1.1.1: Dipole field values By and local field B of Fe8 and Mn12ac for the spin-10-model and the ion-
model. These calculations were made for a spherical sample of 200A diameter with all spins up, i.e. all giant
spins are in the state S, = +10. The sphere contain 2237 molecules and 2148 molecules for Mn12ac and Fe8,

respectively.
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Fe8 Mnl2ac

spin By spin By Spin

n° [gauss] Sz fgauss] Sy
1 +102 +5/2 —254 -3/2
2 +102 +5/2 —254 -3/2
3 -36 +5/2 254 -3/2
4 +63 -5/2 —254 -3/2

5 —6 +5/2 -150 +2

6 —6 +5/2 —40 +2

7 +65 -5/2 —150 +2

8 -31 +5/2 —40 +2

9 — — -150 +2

- 10 — — —40 +2

11 e — —150 +2

12 — — —40 +2
B 0 +10 0 +10

Table V.1.1.2; The parallel dipole field B) at the ion positions for zero energy shift (8 = 0) in the ion-model.
Even though the local field is zero the parallel dipole field values By at the ion positions are always different
from zero and varies from ion to ion.
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V.1.2) Initial field distribution

In this section we will present the calculated local field distribution in the Fe8 system
with all spins parallel, i.e. pointing in the same direction along the casy axis (the g-axis). This
is the initial configuration for a relaxation experiment after the sample has been saturated in a
strong magnetic field. We will discuss the effect of the sample geometry and differences that
are due to the model we have used, i.e. if we are replacing every molecule by one single spin
(spin—10—-model) or if we take the inner structure of the molecule into account (ion—model).

In the first figure [V.1.2.1] we compare the local field distribution for three different
sample shapes calculated using the ion-model. One sample has a spherical shape of 200A
diameter, one sample is a flat cubes of 15 x 31 x 51 sites (corresponding to an aspect ratio of
1.0 x 2.8 x 4.9), and finally a long cube of 49 x 17 x 25 sites (corresponding to an aspect ratio
0of 1.0 x 0.46 x 0.61).

The local field distribution of the spherical sample is a very narrow peak centered at
122 gauss. The value of the center is of course the same as in the table [V.1.1.1]. The small
distribution width is due to finite size effects of the numerical calculation. In particular, the
field values at the surface can vary significantly from fields in the center, though we expect
ideally a uniform field due to the homogeneous demagnetization field.

The local field distribution for the long sample is shifted to a positive field at about
360 gauss and strongly skewed to the left side. The reason for the shift to a more positive field
is that more neighboring spins are stacked along the g—direction and contribute to a more
positive field.

0.1 ] | | ! ! | |
max. 0.6 T
sphere 200A

0.08 [ / .

o 9% 1 fiat 15x31x51 long 49x17x25
e
3
=1
-
0.04 [ 7
0.02 [ B
¢ |
0
-300 -200 -100 O 100 200 300 400 500

H [gauss]

Figure V.1.2.1: The local field distribution of Fe8 with all spins up for three different sample shapes using the
ion-model.

The local field distribution for the flat sample is shifted in the opposite direction, i.¢. to
a negative field value of 220 gauss and is strongly skewed to the right hand side. The reason
for the shift in this case is that neighboring spins in the b— or c—direction contribute an
antiparallel field thus a negative field. In the flat sample the spins in the b— or c—direction are
more numerous and dominate the local field distribution.
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An interesting technical aspect is how the local field distribution depends on the model
we used for the calculation (ion-model/spin-10-model). We therefore calculated the initial
local field distribution for the same sample shapes in the ion-model and the spin-10-model. In
addition we did the same calculation for a simple cubic (sc) lattice for spins §' = 10. For this
“reference” calculation we assumed that the unit cell has the measures 13A x 134 x 13A.

For a spherical sample the local field is uniform. In the numerical calculation the local
field distribution is extremely narrow and the observed width is due to the finite size effects.
We made the calculation on spheres of diameter 200A and 400A. The difference in the local
field between the two spheres is smaller than 1 gauss. The local field in a sc-sphere is zero, as
expected. Using the ion-model the local field has a value of -+122 gauss and in the spin-10-
model a value of +381 gauss.

The local field distributions for a cubic sample are presented in figure [V.1 .2.2]. These
calculations were made on a cube of 55 x 19 x 27 sites (= 28215 sites). Using the Fe$§ triclinic
lattice this corresponds to a sample of 577.5A x 266.95A x 405A. The aspect ratio of this
sample is 1.0 x 0.46 x 0.70 and about the same of a Fe8 sample we have used in the
experiments (long1). We can see in the figure that the only difference between the models is a
shift of about 220 gauss. Beside this shift the local field distributions for both model resemble
each other. The local field distribution for the sc-cube has also the same shape but is even
more shifted. The shift between the Fe8 spin-10-model and the sc spin-10-model is about 350
gauss. This is of the same order as the difference between the Fe8-sphere in the spin-10-
model and the sc-sphere. An additional field shift for the sc-cube comes from the slightly
different aspect ratio compared to the Fe8-cube. Using the same number of sites in the cube
the sc-cube has the measures 715A x 247A x 351A thus an aspect ration of 1.0 x 0.35 x 0.57.
The difference in the aspect ratio results in a change in the demagnetization field and gives a
further shift in the local field.
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spin-10-model spin-10-model
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Figure V.1.2.2: Comparison of the initial field distribution of a cube with 19x27x55 sites. The local field has
been caiculated using 3 different models.
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V.1.3) Random spin orientation

So far we have only calculated the local field distribution for a configuration where all
spins are parallel and pointing in the same direction. In the following we want to discuss how
the local field distribution changes if some spins are turned. In this section we calculate the
locat field distribution for spherical samples where the spins are turned by random. This
corresponds to an Ising-system of spins § = 10 with a magnetization different from the
saturation value. If the fraction n_ of spins are turned, the magnetization of the sample is
M= 1-2n_. We will see that the triclinic lattice of Fe8 has a strong influence on the local field
distribution and result in a rather complicated shape. First some calculations of the spin-10-
model are presented because the lattice effects are very pronounced. Afterwards the same
calculations are presented for the ion-model of Fe8 where the same effects occur but less
pronounced.

First we will discuss the spin-10-model. The initial distribution for the sphere was
shown in the previous chapter, the local field distribution of a sphere is extremely narrow and
centered at 381 gauss, The local field distribution for 10% of the spins turned by random is
shown in figure [V.1.3.1]. This corresponds to a system with a magnetization of M = 0.8. In
this figure we see three peaks. The largest one is centered at about +400 gauss (peak 3) the
next is centered at —200 gauss (peak 2), and the third is very small and centered at about —800
gauss (peak 1). The reason for the occurrence of three distinct peaks comes from the triclinic
lattice of Fe8. The nearest ncighbors in the easy-axis direction (g-axis) are closer to the
centeral molecule (10.54) than the neighbors in the b- or c-direction (14.05A and 15.0A,
respectively) and thus have a considerably stronger field contribution to the Iocal field at a
molecule. The difference in the field strength (~1/77) is of the order of a factor 3 —4. The 3
peaks therefore correspond to 3 different spin configurations of the nearest neighbors in the a-
direction. All molecules in the peak 3 have two neighbors in the a-direction that are both
parallel to M. The molecules in peak 2 have neighbors where one is parallel and one is
antiparallel, and finally the molecules in peak 1 have neighbors that are both down. For the
following discussion we define the configurations with respect to the next neighbors in the a-
direction:

— configuration 1: both neighbors in a-direction are antiparallel
— configuration 2: one neighbor is parallel and one neighbor is antiparallel
— configuration 3: both neighbors in a-direction are parallel

In the figures [V.1.3.2] and [V.1.3.3] the local field distribution are presented for the case that
25% of the spins are turned by random and 50% are turned, respectively.

From these three figures we can conclude that each peak shifts to larger local field
values as more and more spins are turned, and the number of molecule in the peaks changes.
The number of molecules in the peaks is proportional to the area of the peaks. Peak 3, which
is the closest to the initial distribution, decreases while the other peaks increase. If half of the
spins are turned peak 1 and 3 are of the same size and half as large as the central peak 2. For
this situation, half of the spins have nearest neighbors (along a-axis) that are pointing up and
down (configuration 2) while one quarter have only up nearest neighbors (configuration 1)
and the last quarter have only down neighbors (configuration 3).
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Figure V.1.3.1: Local field distribution of a spherical Fe8-sample in a spin-10-model with 10% of the spins
turned randomly. The 3 peaks correspond to 3 different configurations of the nearest neighbors along the g-axis.
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Figure V.1.3.2: Local field distribution of a spherical Fe8-sample in a spin-10-model with 25% of the spins
turned randomly.
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Figure V.1.3.3: Local field distribution of a spherical Fe8-sample in a spin-10-model with 50% of the spins
turned ramdomly.

The resulting effect of the change in the peak size is that even though each individual
peak is shifting to larger local field values, the overall center (the mean value) is shifting to
smaller value. The overall mean value of the local field distribution is +381 gauss if all spin
are up and zero if half of the spins are turned, as expected.
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Figure V.1.3.4: Fraction of spins corresponding to the 3 configuration of next neighbors in the a-direction as
function of the fraction of turned spins.
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In figure [V.1.3.5] the mean values of the 3 peaks and the overall mean value is
presented. The figure shows that the three peaks are moving linearly to larger field values
until the 2nd peak reaches zero when half of the spins are turned. The overall mean value
shifts linearly in the opposite direction until it also reaches zero when the magnetization is
ZEro.

magnetization
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500 _‘—/}""—_
[ overaH 1

0 0,1 0,2 0,3 0,4 0,5
fraction of turned spins

4000 i 0

Figure V.1.3.5: Center value of the 3 peaks and the center value of the overall distribution in the spin-10-model
for a spherical Fe8-sample, The spins are turned at random.

The standard deviation & of the three peaks is plotted in figure [V.1.3.6] for the
randomly turned spin configurations. The standard derivations for all the three peaks are
identical. It increases linearly for a small number of turned spin and then roughly follows the

equation ¢? = ¢2n_ where n_is the fraction of turned spins. The standard deviation reaches a

maximum at .= 0.5, i.e. M =0, and decreases again if we turn even more spins. Near the
maximum of n-) deviates from ¢’ =g n_. We have extrapolated the curve to a negative

magnetization A/ =—1. In this region the order in the system is increasing thus the standard
deviation decreases as can be see. ‘
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Figure V.1.3.6: Standard deviation of the 3 peaks in the local field distributions in the spin-10-model for Fe8.

In figure [V.1.3.7] a series of local field distributions are shown for several
percentages of turned spins where we have taken into account the individual ions within the
molecules (ion-model). The distributions have a quite complicated shape for the same reason
as in the above calculation, the triclinic lattice of Fe8.
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Figure V.1.3.7: Series of local field distributions for a spherical Fe8-sample in the ion-model. The spins are
turned at random
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The distribution for the initial state is very narrow with some finite size effects and
centered at +122 gauss. In contrast to the spin-10-model, the 3 peaks although still present,
are not well separated if some spins are turned. The peaks for the three different
configurations overlap as can be seen in the figures [V.1.3.8] and [V.1.3.9]. These figures
show the local field distribution for 20% and 50% of the spins turned, respectively. The bold
line is a smoothed curve of the overall local field distribution. The thin lines are the
distributions corresponding to the three configurations as before.
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Figure V.1.3.8: Local field distribution in the ion-model of a spherical Fe8-sample with 25% of the spins turned
at random. The distribution shape is strongly influenced by the 3 different configurations of the nearest
neighbors along the g-axis.
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Figure V.1.3.9: Local field distribution in the ion-model for 50% of the spins turned at random with the 3
distributions due to different nearest neighbor configurations.
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The mean values for the ion-model are shown in figure [V.1.3.10]. The mean values of
the peaks due to the three. configurations shift linearly to higher field values while the overall
mean value goes to zero for M = 0.
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Figure V.1.3.10: Center value of the 3 peaks and the overall distribution for a spherical Fe8-sample in the ion-
model as function of the fraction of turned spins. The spins are turned at random.

In figure {V.1.3.11] the standard deviation of the three peaks and the overall standard
deviation is shown. The standard deviations of the peaks corresponding to the three different
configurations are identical. As in the spin-10-model, the standard deviation has a maximum
when 50% of the spin are turned, afterwards it will decrease again.
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Figure V.1.3.11: Standard deviation of the 3 peaks and the overall distribution for a spherical Fe8-sample in the
ion-model.
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V.2.1) Square-root relaxation

The combined effects of fluctuating hyperfine fields and the local field distribution has
been taken into account in a theory proposed by Prokof’ev and Stamp (P&S). In the quantum
regime, P&S predict that for short times, i.e. for the beginning of the relaxation the
magnetization decreases as the square root of time. We found that for the first 100 sec of the
relaxation, the magnetization curve is square root like for all external fields within the first
resonance. The inverse of the square-root relaxation time is proportional to the initial local
field distribution.

[Prokof’ev 98] predict that due to fluctuating hyperﬁne fields within a molecule, the
relaxation time is given by

& =g exp(HE/ &) @, V2l

where £ is an energy bias and & is the average strength of the hyperfine field, sce chapter
[IL3]. P&S estimated that & ~ T;" where 7, is the fluctuation rate of the hypetfine field,
typically 7;! ~10°7 =107 sec. Expressed in units of a magnetic field acting on a spin § = 10
this energy corresponds to & ~ 10" — 107 gauss. The relaxation rate between the ground
states m = —10 and m = +10 of a single molecule in resonance, i.e. 7;' =7, (£ = 0) is given by
f;-al = _2_.‘_{}.219_

Jal,

where A%, is the tunnel splitting between the ground states and I'; of the order of 73 . P&S
estimated that Ao shouldn’t exceed 10°K. Thus the tunneling rate of a single isolated

molecule in resonance should be of the order of
~005-5sec. (3,V.2.])

This relaxation time is of the same order as the inverse frequency v; given by the theory of

(2,V.2.1)

van Hemmen and Siit6. This coincidence may be due to the fact that accidentally the small
hyperfine ficlds in Fe8 is (very roughly) of the order of the tunnel splitting, i.e. Ajo ~ I'> thus

7, ~ A,, as based on the theory of van Hemmen and Siit6. However, a major difference

between these theories is that due to the hyperfine interaction the tunneling should be
incoherent while in the theory of van Hemmen and Siit6 the tunneling is coherent.

P&S also include dipole interactions between molecules. They argue that after
saturation of the sample, and at the beginning of the relaxation the local field distribution is an
evolving Lorentzian distribution. The center and the width are changing linearly with the
magnetization. For a short times in the range

T, §—°<t<’r@ 4, V.2.1)
" Ep S
the relaxation curve should follow a square-root law

M@ =1-Jil7,, . (5,V2.1)

Ep is the total dipolar coupling from the nearest neighbors and roughly of the order of
100 — 500 gauss. The square-root behavior should be observable in a time range from
fractions of a milliseconds up to at least 100 sec or even longer. The predicted experimental
relaxation rate in their theory is give by

7} =T‘1€—°c 6, V.2.1
= ( )

s
D

where ¢ is a geometrical factor that depends on the sample shape and is roughly of the order
of 0 —100.
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To verify the theoretical predicted square-root time dependence, we analyzed the
relaxation curves in the quantum regime using the Multi-Relaxation-Scan data as presented in
the section {IV.2.3] figures [IV.2.3.12] to [IV.2.3.15]. The relaxation curves in the first
resonance are shown in figure [V.2.1.1]. Each vertical line represents a relaxation
measurement of 180 sec. These measurements were made on a long single crystal (long1).
Before each measurement (one vertical line) the sample was first saturated in a strong positive
field of > 3 tesla. The field was then rapidly decreased to a predetermined field as can be seen
in the figure.

50 1 l T I
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I o)) o
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N
l
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T=160 mK

38 | I l | [
-600 -400 -200 0 200 400 600
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Figure V.2.1.1: Relaxation curves for different field values. Each vertical line represents one relaxation
measurement. For every measurement the sample was first saturated in a strong positive field. The measurements
were done on a long single crystal (fongl).

From the vertical lines in this figure the relaxation of the magnetization for the fields
of +400 Oe to —200 Oe are plotted versus the square root of time in figure [V.2.1.2]. The
figure shows that for the first 100 seconds, all fields the data are on a straight line in this plot
and can be well fit by a square-root law (solid line). For longer times the data begin to deviate
from the square-root law. The duration of the square-root behavior is of the order of what we
expect from the theory but rather short compared to the typical relaxation time (= 10* sec) at
this temperature. One might therefore presume that the fit is just an expansion of the stretched
exponential function that fits the data over a much longer time range. A first order expansion
of the stretched exponential function is given by

Mt)y=1-(@/7 (7,V2.1)
with = 0.4. A fit of this kind (dashed line) doesn’t match the data very well as can be see in
the figure. Another important restriction is that all fitted curves when extrapolated to zero
time should coincide at the saturation value M(r = 0) = M,,,. With this restriction we see that
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the best fit in this region is by a square-root law. For larger times the relaxation behavior must
change otherwise it would not be fit by a stretched exponential function with p=04.
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Figure V.2.1.2: The relaxation curves (longl) in different external fields as function of the square-root of the
time.

The inverse square-root relaxation rates 7, are plotted as a function of the field in

figure [V.2.1.3]. The fastest relaxation rate is found at a field of H = +80 Oe and is of the
order of 7_} (H = +80 Oe) = 2 x 107 sec. The field value of the center of the first resonance is

sqrt
the same as observed be other methods (long relaxation curves, hysteresis curves, and Multi-
Relaxation-Scans). It is remarkable that the square-root relaxation time is of the same order of
magnitude as the relaxation time obtained by a stretched exponential fit 7 ~ 10* sec.
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Figure V.2.1.3: Inverse square-root relaxation times (longl) as function of the external field.
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The results for a second long sample (long2) are shown in figure [V.2.1.4] and
[V.2.1.5]. The square-root behavior is about the same as for the other sample except that the
fastest relaxation here is at a field value of +20 Oe and the relaxation time is three times faster
compared to the sample (longl).
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Figure V.2.1.4: Relaxation curves as function of the square-root of the time in different external fields for
another long sample (long2).
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Figure V.2.1.5: Inverse square-root time (fong2) as function of the external field.
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In figure [V.2.1.6] the field dependence of the relaxation rate for 4 different sample
shapes are presented. This figure contains the data of the 2 long samples (long!) and (long?2)
and of the spherical and the flat sample. The resonances have all about the same width of
100 Oe and the square-root relaxation time are also of about the same order 7 ~ 10* sec. The
positions of the resonance centers are at +80 Oe (longl), +20 Oe (long2), +300 Oe (sphere
and flat). These values correspond roughly to what we have seen before from hysteresis
measurements and Multi-Relaxation-Scans,

10 4y T T

-200 -100 0 100 200 300 400 500
H [Oe}

Figure V.2.1.6: Inverse square-root relaxation time for different sample shapes as function of the external field.
The width of the resonances are about the same for all sample shapes ~100 Oe. The center of the resonances
varies significantly with the sample shape.

The inverse square-root relaxation time ’L';;ﬂ (H) should be proportional to the initial

local field distribution according to the theory of P&S. If we compare the experimental curves
with our numerical calculations for the initial state, figure [V.1.2.1], we find no agreement!
These calculations were done on samples with a similar aspect ratio as the sample we have
measured. According to our calculations only the flat sample should have a resonance at a
positive field. (For a comparison we have to change the sign of the field values for the
numerical calculations). The long and the spherical sample should have their first resonance at
negative (applied) fields. The spherical sample should have a much smaller resonance width
than the other samples and the resonance of the long and flat samples should be skewed. The
fact that the resonance of the spherical sample has the same width as the other samples might
come from the rough surface of the sample. Due to the milling process to produce a spherical
sample the surface has many defects.
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V.2.2) Phenomenological model

Dipole interactions between molecules strongly influence the relaxation behavior in
the quantum regime. In this chapter we will discuss how the local field distribution affects the
relaxation dynamics. We will present a simple phenomenological model that fits the
relaxation curve well and can indicates why the relaxation curves resembles a stretched
exponential behavior in an intermediate time range. The model can also explain why the
measured relaxation rate ’r;f}m.ve is orders of magnitude slower than the theoretical predicted

tunneling rate 7," of a single molecule. Their ratio 7., /7o 18 of the same order as the ratio

between the strength of the dipole interaction Ep and the resonance width of a single molecule
o 11y~ E,lo

tunnel * Teﬂective tunnel *

The tunneling of the spin in a single molecule has an extremely narrow resonance
width. The resonance width between the ground states m = +10 is given by the tunnel splitting
between these states Ajp. The exact value of Apg is not known but theoretical estimates
indicate that A1 should not exceed 10K, This energy corresponds to a magnetic field of
about 10 gauss acting on a spin of § = 10 [Prokof’ev 98]. If we include hyperfine effects as
proposed by P&S this resonance is broadening up to a estimated value of & ~ 107 K
corresponding to a field of 10 gauss. We can thus assume that the resonance of a single
molecule is roughly of the order of say Grumme ~ 102 gauss. Within a sample the molecules will
all experience a different field. This local field distribution might be due to an inhomogeneous
demagnetization field but also that during the course of a relaxation more and more spins are
turning. This also gives rise to a broadening of the local field distribution, see in the annex IV
or the section on the numerical calculation of randomly orientated spins. The typical local
field distribution is of the order of Ep ~ 100 gauss. In consequence only a small fraction of the
molecules are in resonance. A schematic picture of this situation is shown in figure [V.2.2.1].

c_f}unne! number of melecules in resonance
d n(t)-‘ulunnel ptucal (Brasnnance;t)

0

jocal

B

resonance

Ep

Figure V.2.2.1: Schematic picture of the effect of the local field distribution on the relaxation. The local field
distribution is much larger than the resonance width of the molecules. Therefore only a smal! fraction of the
molecules are in resonance (shaded bar) and can take part in the relaxation, the other molecules are blocked and
can’t tunnel,

Only the molecules of the local field distribution that are at the resonance field
Bresonance and in a small surrounding range of Gummer may flip. All other molecules are off
resonance and blocked. The number of molecules that are in resonance is depicted in the
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figure [V.2.2.1} by the shadowed bar. Since the local field distribution is much broader than -
the resonance of a single molecule Ep >> Gy, We can assume that the resonance of a single

molecule as function of the field is given by
Presonance(B) = ©
where 6(B) is the Dirac delta function.
During the course of the relaxation the local field distribution evolves in time ¢,
schematically shown in figure [V.2.2.2].

8B)  (1,V.22)
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Figure V.2.2.2: Duoring the course of the relaxation the local field distribution is evolving. The center shifts from
the initial value to zero and the distribution width increases continuously. The small arrows at the bottom
indicates that the resonance is shifting relative to the internal field Bjjern due to the change of the
demagnetization field H;, = NM while changing the magnetization M.

The local field distribution p,,,(B;f) shifts towards zero from the starting value and

broadens at the same time. During this evolution the resonance of the molecules will stay at
the same value. Experimentally we can shift the local field distribution by an external field
Hextern. The resulting local field distribution is then p,,(B—B,,, ;7). The number of

molecules in resonance will also evolve with the local field distribution. The fraction of
molecules in resonance n(?) is given by

H(I) - J.presunance(B)plumf (B - Bextem ;I) dB = Gfunnelpiocal (_Bexfem;t)' (23 V2'2)

We can simple write

(M) = 0 et Piocat Bosger s M(1)). (3, V.2.2)
where p,,..,(B- B, M) signifies this time no field distribution but the value of the local
field distribution at the fixed value Beyer. Figure [V.2.2.3] shows an example of how the local
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field distribution changes for a fixed value of Beys.rn as a function of the changing the
magnetization M.

0.01 [

p(M)

0.001

M

Figure V.2.2.3: As M(r) decreases during a relaxation measurement, the fraction of molecules in resonance
n(M{()) decreases also. That means less and less molecules are in resonance and the relaxation becomes slower.

The dynamic model
For a phenomenological model of the relaxation we use the rate equation

th(r) =1 (M) (4, V.2.2)

where we allow the relaxation rate to change with time during the course of the relaxation and
we neglect correlation effects between the spins, i.e. two particle effects, see {Prokof’ev 98].
As mentioned, at any given time only a small fraction of the molecules are free to tunnel and
most of the molecules are blocked. All molecules in resonance are assumed to have the same
relaxation rate 7,'. The relaxation rate will therefore be proportional to the fraction of

molecules in resonance hence
() = 7;'n(r). (5,V.2.2)
Using equation (3, V.2.2) the relaxation is given by the differential equation

dM _
7 —t_ - _-TO larunnefplaml(Be M)M (6’ V'22)

xtern ?

To solve this differential equation we need to know how the local field distribution evolves
during the course of the relaxation. A priori we cannot say what form the local field
distrbution has. However, it has been demonstrated that in the thermal activated regime for a
growing number of randomly placed spins the local field distribution evolves from a
Lorentzian form to a gaussian distribution, see annex IV and [Berkov 96]
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_ L _(B—u()y
)OIﬂcaI (B, M) = -\/EO'(M) c p( 20’2(M) ] . (7, V.22)

The center and the width of this Gaussian distribution is given by

WM)=p,M (8,V.22)
where u, has the dimensions [field / magnetization], and describes the linear shift of the peak
with changing M.

o (M) =0l(1- M) (9,V.2.2)
as we have discussed in the chapter V.1.3, see also annex I'V. Finally we assume that we apply
an external field that shifts the center of the local field distribution into resonance thus

Hexlem = Jqumr (105 V2'2)
in this units M, = 1. Substituting this into the differential equation we get
M o exp(=h(1- M))
— =T . 11,Vv.22
df effective '\/1 _ M ( )
with
4“2
b= (12, V.2.2)
20,
and

i (o)
T = e T —tutel 13, V.22
effective ’\/ﬁ 0 0_0 ( )

We can now solve equation (11, V.2.2) and fit the resulting curve to the data of a relaxation
experiment. The fitting parameters are T eee A0 b, We can’t solve the equation analytically
thus we used numerical methods, We studied the solution of equation (11, V.2.2) with various
values of the parameters 7, . and b and found that the resulting curve is somehow
determined independently by these parameters. The parameter b determines mainly the
curvature while 7, .. determines mainly the time scale. The resulting curve of equation (11,
V.2.2) can be well fit by a stretched exponential function with its fitting parameters T oreren A0
B. The parameter 7, .. is almost identical to the fitted relaxation time Tomeren and the
parameter b influences mainly the exponent 8 of the stretched exponential function but in a
way we can’t exactly quantify,

The result of this fit is shown in figure [V.2.2.4]. The figure shows that a fit of this
model matches the data as well as a stretched exponential in an intermediate time regime (200
sec — 10° sec). The obtained fitting parameters are 7. =1.5x10" sec and =795,

effective
Although this equation has also 2 fitting parameters as the stretched exponential the relaxation
process is now better understood along with the evolving local field distribution.

From equation (13, V.2.2) we can now estimate the tunneling rate of a single molecule
7,'. Using the observed values for 0, ~ 100 gauss and taking for the resonance width the

estimated value of o,,,,, ~10™ gauss we find that the tunneling time for a single molecule is
of the order of 7, ~ 1 sec in agreement with the theoretical value, see (3, V.2.1).
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Figure V.2.2.4: The fit of a model curve (dashed line) to a measured relaxation curve (solid line). In addition a fit
to a stretched exponential is shown (point line). The model curve has the same shape as a stretched exponential
function.

Obviously this fit doesn’t match the data at very long times and at short times (square
root relaxation). It is surprising that this model matches the data at all since we used a local
field distribution that is justified only for a thermal activated regime and we use it for a fit in
the pure quantum regime. We therefore recall the main assumptions:

[} All molecules in resonance tunnel at the same rate

2) The number of molecules in resonance is decreasing continuously during the course of
a relaxation

We can thus use equation (4, V.2.2) and (5, V.2.2) to measure or calculate the fraction of
spins in resonance
dIn M(t)
dt
For a stretched exponential relaxation this function reads
Tin(t) = Bt 1P (15, V.2.2)

the decrease of molecules in resonance follows a power law in time. An evolving gaussian
distribution give rise to a function ‘

() = — (14,V.2.2)

a0 exp(—b(1— M))
effective Mm '

It is not obvious that equation (15, V.2.2) and (16, V.2.2) result in the same relaxation. In
figure [V.2.2.5] we plot these functions and the data (using equation (14, V.2.2)).

in() =1 (16,V.2.2)
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Figure V.2.2.5: dinM/dt of a2 measurement (relaxation at 70mK) and the corresponding functions for a stretched
exponential or the gaussian distribution versus the time or the magnetization.

It is now clear that the fact that an evolving gaussian distribution leads to a decrease of
the number of spins in resonance similar to a power law is the main ingredient allowing us to
fit the data in an intermediate time range by this model.

Due to the discussion above we can now give an interpretation of the parameter § of a
stretched exponential fit. Assuming the relaxation of the isolated molecules in resonance 7, is
constant then the number of molecules in resonance decreases proportional to a power law in
time n(t) o« t* (equation 15, V.2.2).

We will discuss in the next section that the field sensitivity of the tunnel effect gives
rise to correlations in the spin configuration. We will also show that these correlations
strongly influence the local field distribution and that in fact the shape of this distribution is
not at all gaussian. Thus an open question remains why this model is in such good agreement
with the data over a long period of time. This question merits further investigation.
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V.3.1) Correlation effects

We have demonstrated that dipole interactions between molecules influence strongly
the relaxation behavior in the quantum regime. So far we have only discussed this effect in
terms of a local field distribution over the sample. The different local field values at the
molecules corresponds to a ‘local’ energy shift at each molecule. If the energy shift is larger
than |A the molecule is blocked and cannot flip. If the energy shift is smaller than |Amml|

the molecule is free to flip by quantum tunneling. We have shown that the local field
distribution is evolving during the course of a relaxation and will change the number of spins
in resonance. This number in turn is governing the relaxation behavior. For the evolution of
the local field distribution we have use results as discussed in the annex IV and in the chapter
on the numerical calculation V.1. What we have neglected so far is how spins may develop
correlations via the dipole fields and thus the energy shift. We emphasize that the correlations
are not caused by exchange interactions or magnetic dipole forces between the molecules that
would try to align or anti-align the spins. The actual orientation of a spin is not determined by
these correlation effects because (at the first resonance Hipear = 0 gauss) the up and down state
are degenerate and thus neither is energetically favorable. The correlation effects govern
wether a spin is free to flip, or if it is blocked.
(AT O O O

R R AR AR

tunnel

blocked

| un-blcking
* possible

(O T O O e

Figure V.3.1.1; Schematic 2-dimensional figure on the occurrence of correlations in a quantum tunneling system.
Assuming all spins are initially in resonance. If one spin turns it will block about 10°-10° neighboring spins. If
another spin turns in the vicinity of a blocked are it will block other spins but might un-block some spins in an
overlapping area.

A spin can only flip via tunneling if the initial and the final states are degenerate, ie.
the local field is zero within |Amne[ , and therefore the Zeemann energy of the spin does not

change. Correlations come about because the weak dipole field of a spin that has tunneled can
nevertheless lift the degeneracy and remove from resonance a large number of neighboring
spins. These spins become effectively blocked or frozen and most wait until some new
configuration of spins results in a field close to zero. As an illustration, consider the ideal case
of a spherical sample, with all spins aligned after saturation. If a small external field is applied
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in order to compensate for the demagnetization field, the internal field Hjpen = 0 and all spins
may be brought into resonance at once. However, as the first few spins begin to tunnel, the
now uncompensated dipole fields of each one will remove from resonance all other spins
within a radius r, where its dipole field ~1/r* is greater [A,,,|. see figure [V.3.1.1] left hand

side (for snnphcxty we ignor the vector nature of the dipole field). For § = 10, and a resonance
width of 10~ gauss, this corresponds to approximately 10°-10° spins that are pushed off
resonance for each spm that tunnels! Thus very quickly most spins will be blocked and only a
small fraction 10°~10 of the relaxation occurs with this natural rate. Nevertheless, the
relaxation does not stop completely because some spins in the vicinity of blocked regions may
still be free to flip. These spins can in turn un-block spins in some overlapping volumes by
compensating the internal field such that once again H,,, <|A in those regions, see

tunnel
figure [V.3.1.1] right hand side. Then spins in these 'newly liberated' volumes may flip,
blocking and un-blocking other parts, and so on. For very long times, the blocked areas are so
close that very few spins remain in resonance. These may still tunnel back and forth, but do
not change A unless multiple flipping occurs, which we have neglected in phenomenological
model.

Note that the resulting spin configuration due to the correlation effects is strongly
influenced by the anisotropy of the dipole interaction. The z-component of dipole field of a
single spin is given by

3cos’ (9) 1

H=E, (1, V.3.1)

where 8 is the angle between the orientation of the spin (the a-axis) and the direction pointing
to the position of the neighboring spin, r is the distance between the spins, and Ep, the strength
of the interaction. Thus the sign of the dipole field depends of the relative position of the
neighboring spin. To give an example lets assume all spins are up and the local field is exactly
zero. If one spin turns all neighboring spins within a cone along the a-axis will experience a
positive energy shift and the spins outside the cone will experience a negative energy shift,
see figure [V.3.1.2]. The spins within a radius rpocc Will be blocked. To un-block a
neighboring spin a with a positive energy shift another spin b outside the blocked area has to
turn. The spin a can only be un-blocked if the change in the local field due to the spin b is
negative and can counterbalance the former energy shift up to [A

tinnel | N

positive
energy
shift

negative

energy

Figure V.3.1.2: Angular variation of the dipole field. If the spin at the origin is up the dipole field (and the
energy shift) within a cone along the a-axis is positive and negative outside.
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V.3.2) Monte-Carlo Simulation

To study the correlation effects in this system we did Monte-Carlo (MC) simulation of
the relaxation in the quantum regime'. We found that the local field distribution shows
remarkable differences between a thermal activated process and a quantum tunneling process.
In the calculations we have made before, chapter [V.1.3], we turned the spins randomly. This
corresponds to a thermal activated process in an Ising-system. In such a process the spins are
free to turn independently of the local field they experiencez. In the quantum regime a spin is
only free to tunnel if the local field value is within a range of about A, ~ 107 gauss. The

MC-distribution is depleted at the resonance field, i.e. less spins remain in resonance
compared to a random-distribution.

We employed a MC algorithm to simulate the relaxation via quantum tunneling. The
algorithm works at follows:

1) First we chose a molecule by random

2) The local field of the molecule is calculated

3) If the field value is within the resonance the spin may flip with a certain probability py if
the molecule is off resonance nothing is changed.

These steps are continuously repeated. The numerical simulations were made using a
VOLVOX multiprocessor system at the CRTBT. This computer consists of 12 processors that
work independently. We were thus able to run up to 12 independent MC-relaxation
simulations in parallel and test a large varicty of parameter sets. We preformed MC
simulation on cubic and spherical samples in the range from 20 x 20 x 20 sites up to
50 x 50 x 50 sites. Since the dipole interaction is long range we have to re-calculate the local
field distribution after every spin that turns. To improve the computing performance we used
a look-up table. Before starting the MC-simulation an array H was initialized where we stored
the local field contribution of a molecule/spin at a site distance of (0,0,1), (0,1,0), (1,0,0),
(0,0,2) etc. After this initialization the calculation of the local field at one site due to all
molecules/spins in the sample is reduced to a simple addition in the working memory of the
processor.

Two different criteria were used to determine if a given spin can flip, i.e. if the spin is
ifi resonance:

a) We can use a step-function, i.e. if the field is within a range Hp of the resonance field Hy,
the molecule may flip with a probability p otherwise it is blocked.

b) We can use a resonance function as proposed in [Prokof’ev 98] where hyperfine effects are
take into account. For a molecule experiencing a local field H, the flipping probability is

given by p(H)= p, exp(—|H -H,_\/ HU).

The parameter H,., allows us to bring the maximum of the initial local field distribution into
resonance and corresponds to an external field in an experiment. We found that both criteria

' acknowledge the help of Nikolai Prokof’ev

2 The dipole field effect on the barrier height is negligible. An energy barrier of 24K corresponds to a field of
Hy= 1.8 tesla. The change in the barrier height due to the Stoner-Wohlfarth model is given by

AHYy= A(] - (H/Hs)z). A dipole field of 100 gauss will change the barrier height only by

e(H)=(H/H,)* ~107. Although the barrier height effects the relaxation time 7(T, H) exponentially, for such
a small change we can do an expansion of the exponential function (T, H) = (T, H = 0)(1+ e(H Ik
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give about the same results. Usually we used the method b). For the calculations of the local
field we used the ion-model because we believe the 3 well separated peaks in the local field
distribution of the spin-10-model are rather artificial and will lead to spurious results. We
tried various parameter sets for pg, Hey, and Hy and found that the result is very sensitive to
their choice but nonetheless have common features. Usually we use po = 0.1. For a spherical
sample H,.;= 122 gauss and Hy = 0.3 gauss and for the cubic sample H,.; = 80 gauss and
Hy =1 gauss. H.; was chosen so that the resonance is in the maximum of the initial local field
distribution. For Hy we have used larger values than the theoretically predicted (~ 10 gauss)
due to restriction in size for the numerical simulation. If the resonance is too small the whole
sample will be blocked if the first spin is turned or worse due to finite size effects not even
one spin might be initially in resonance. A spin at a distance of 10 sites has a dipole field that
is 1000 times smaller than the dipole field of the nearest neighbor. Thus since the dipole field
of the nearest neighbors is of the order of ~100 gauss, such a distant spin still has a dipole
field contribution of 0.1 gauss, i.e. of the order of the resonance!

The overall local field distribution for a spherical sample after a relaxation to M = 0.8
is shown in figure [V.3.2.1]. In this figure we compare the overall field distribution obtained
by the MC simulation (solid line) with the distribution that is obtain if we turn the same
number of spins by random (dashed line). The peaked shape of the distribution is due to the
triclinic lattice of Fe8 as we have discussed before, chapter [V.1.3], and is of no further
importance for the discussion here. It is remarkable that the overall local field distribution is
almost the same, regardless if we have turned the spins randomly or by the MC rules.

0,08 [T T T T
L 'f'= p
- HLY p
0,07 [ " \ ]
[ random ]
E 0,06
o
vl
£ 0,05
+
=
[ -
T 0,04
+
(=X
Iy
0,03
s
=
g
a” 0,02
0,01

H [gauss]

Figure V.3.2.1: Overall local field distribution of a spherical Fe8-sample with 20% of the spins turned, The
random- and the MC-distribution are almost identical.
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A difference in the local field distribution due to the to relaxation processes only
occurs if we distinguish between the local field distribution over all up spins in the sample
p,(H) and the distribution over all down spins p_(H). A comparison of the p, (H)-
distribution between the MC and random calculation is shown in figure [V.3.2.2]. The figure
shows that the MC-distribution is reduced near the resonance (vertical dashed line) compared
to the random-distribution. About 200 gauss away from the resonance the MC-distribution is
larger than the random-distribution. Beside this difference both distribution are similar, i.e.
they both have a peaked shape due to the triclinic lattice.
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Figure V.3.2.2: The local field distribution over all up-spins for a spherical Fe8-sample with 20% spins turned.
The MC-distribution is depleted at the resonance compared to the random-distribution.
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The difference between the p_(H)-distributions is more pronounced, figure [V.3.2.3].
Again the random-distribution has a similar shape as before, i.e. as for p,(H) and p,,,,(H).
However, the MC-distribution is very different. This distribution has no second peak, is much

narrower than the corresponding peak of the random-distribution, has a much larger peak
value, and is centered exactly at the resonance.
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Figure V.3.2.3: Local field distribution over the down spins for a spherical sample with 20% spins turned. The
MC-distribution is centered at the resonance and has only one peak. The random distribution resembles the
overall random-distribution.

We have seen that the overall distribution is identically for the random process and the
MC process while the p_(H)-distribution evolves in a very different way. Since the weighted
sum of the p (H)- and the p_(H)-distribution gives p, ., (H) the large difference in the
p_(H)-distribution has to have an effect on p, (H). In the range where p_(H) is larger than
the equivalent random distribution p, (H) has to be smaller and vice versa.

140



In figure [V.3.2.4] we present the corresponding distributions for a cubic sample. The
distributions of the cubic sample have the advantage that the initial distribution is much
broader than for a spherical sample due to inhomogenities in the demagnetization field.
Though the effects are the same, the differences in the distributions are easier to recognize
since the peaks due to the triclinic lattice are smeared out and much less pronounced. In the
figure we present the p,(H)-, the p_(H)-, and the p,,, (H)-distribution of a cube with
25 x 25 x 25 sites for a magnetization of M = 0.8. Again the p_(H)-distribution has only one
peak and is centered exactly at the resonance. In this figure it can easily be seen that the
p_(H)-distribution is exactly the amount by which the p, (H )-distribution is depleted at the
resonance.
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Figure V.3.2.4: Comparison of the MC local field distributions for a cubic sample with 10% of the spins turned.
The depletion of the up-spin distribution corresponds to the increase in the down-spin distribution.
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The spins of the p_(H)-distribution and the p, (H)-distribution have different effects
on the quantum relaxation. The spins of the p,(H)-distribution are up. If one tunnels the
magnetization decreases, i.e. the sample relaxes. The spins of the p (H)-distribution are
down thus if one flips, the magnetization increases. At the resonancce p_(H) is smaller than
P, (H), and the net effect is that the magnetization decreases but at a slower rate, i.e. the
relaxation time is strongly influence by the difference between these distributions. We
therefore introduce the definition of a depletion-distribution

d(H) = p,(H)-p_(H). (1,V.3.2)
A comparison for the cubic sample between the overall distribution and the depletion
distribution is shown in figure [V.3.2.5]. It shows that the depletion effect at the resonance is
very pronounced in the depletion distribution d(H).
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Figure V.3.2.5: The depletion distribution d(H) compared to the overall distribution. The depletion distribution
should govern the relaxation process.
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V.3.3) Measurement of the local field distribution

In this chapter we want to discuss the depletion of the local field distribution near the
resonance due to the correlations in the system which develop during the course of a
relaxation in the quantum regime. Finally we will present an experiment that measures
qualitatively the depletion effect.

First we will show how correlation effects enter the phenomenological model as we
have proposed in, chapter [V.2.2]. We have seen that we have to distinguish between the local
field distribution of the up spins p,(H) and of the down spins p_(H). The number of
molecules in resonance is not simply give by the overall distribution p,,,,(H) but the

relaxation is governed by the depletion distribution d(#;?). This distribution evolves almost
like the other distribution during the course of a relaxation along with the shifting center and
the broadening. We use again the rate equation but this time not for overall magnetization M

but for the fraction of down spins 7 :

dﬂé‘t(t) = —[p,(f)n_ (£)— P, (r)n+ (3)] (1, V33)

where ps(7) are the flipping probabilities from up to down (+) and down to up (-). The
flipping probabilities are proportional to number of molecules (up or down) in resonance.

pi(t) = T(;lArunnelpi (“Hexrem;t) (25 V33)
where p,(H;t) are the normalized local field distribution over the up (+) and down (—) spins.
The differential equation that governs the relaxation is thus

di’;:t) — —TglAmnnegd(_Hexwm;t) (3, V33)

but we can’t give any expression for d(f;¢).

Measurements

We have measured the effects of quantum tunneling on the distribution of relaxation
times as shown in figure [V.3.3.3]. Our numerical simulations can be qualitatively compared
to these measurements. All three measurements were made at 80mK on an approximately
spherical single crystal. However, the sample was prepared in different ways, as we shall
explain below.

The sharp peaked 'initial distribution’ ('z:s'q‘rr vs. field) was made with the magnetization always
close to the saturation value (1— M/ M_, <<1) and was obtained by using the same procedure
as used in chapter V.2.1 on the square-root behavior, i.e. for each point the sample was first
saturated, the field was then rapidly decreased to a given target field, and the relaxation of the
magnetization was measured, Because the sample was close to saturation, a fit to /f is
appropriate. The peak in the distribution for this sample was approximately +230 Oe with a
width of ~ 120 Oe. This sharp peak corresponds roughly to the initial distribution of our
computer simulations.

The other two distribution curves were made at the half demagnetized state M =M, /2.

sat

However, there is a tremendous difference in the two distributions curves depending on how
we arrive at M /2.

sat
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— Thermal distribution

The 'thermal distribution' was made by rapidly quenching the sample from 1K to 80
mK in a field of 800 Oe, (i.e. field cooled magnetization). At 1K and 800 Oe, M has an
equilibrium value of M = M,, /2. During the rapid cooling to 80 mK (z < 30 seconds), the
sample does not have time to change its state, either by thermal activation or tunneling (if
present), and thus the thermal distribution is frozen. The distribution was then measured by
sweeping the field at a fixed ramping rate, and measuring the relaxation for 20 minutes at

cach field as shown in figure [V.3.3.1]. A 7, at cach field was obtained by a fit to a
stretched exponential with §=1/2.
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Figure V.3.3.1: Measurement of the thermal distribution. The sample is field cooled to have a magnetization of
M =0.5. Afterwards we step through the field and perform a sequence of relaxation measurements.
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— Quantum tunneling distribution

The "tunneling distribution’ was made by first saturating the sample in a high field, and
then letting the sample relax in an applied field of +230 Oe (i.e. at the peak of the initial
distribution). During this time correlations between the spins develop. After a petiod of 4
hours, the magnetization decreases to M = M, /2. At this point we then swept the field up to

800 Oe as shown in the inset, again measuring the relaxation for 20 minutes at each field, and
obtaining 7 from stretched exponential fits with =1/2. The entire procedure was

siretch

repeated for the decreasing field sweep, see figure [V.3.3.2].
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Figure V.3.3.2: Measurement of the quantum distribution. We let a staturated sample relax for 4 hours at the
center of the initial distribution to a magnetization value of M = 0.5. Afterwards we step through the field and
perform a sequence of relaxation measurements.
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The difference between the thermal and quantum tunneling distributions is striking,
figure [V.3.3.3]. The former is broad, and well fit by a Gaussian distribution (solid line) of
width ~ 400 Oe indicating the random nature of the distribution similar to the random
simulations. The tunneling distribution is distorted, similar to the Monte-Carlo results, figure
[V.3.2.5], showing a depletion of the spins at the initial resonance which we believe are due
the growth of correlation effects in the quantum regime. This gradual distortion results in the

breakdown of the 'intermediate time model’, because less spins stay in resonance as predicted,
and the relaxation becomes slower than the calculated curve
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Figure V.3.3.3: Three inverse relaxation time distributions. The initial distribution was measured for a saturated
sample M = 1. The thermal distribution was done on field cooled sample that was half-demagnetized M = 0.5.
Finally the tunneling distribution was also done on a half-demagnetized sample. For this measurement we let a
saturated sample relax for 4 hours at the center of the initial distribution (+230 Oe). The thermat distribution is
smooth and regular reflecting the randomness of the thermal activated spin flipping. The tunneling distribution is
very irregular with a sharp peak and a minimum at the former relaxation field of +230 Qe. This irregularity

reflects the depletion of the local field distribution due to correlations that build up during the course of the
initigl relaxation of 4 hours.
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Conclusion Générale

Nous avons étudié Peffet tunnel d’aimantation dans des aimants moléculaires a trés
basse température. Les systémes que nous avons étudiés se composent de molécules
magnétiques entourées par un cristal organique non-magnétique. Il s’agit donc d’un résean
régulier d’aimants nanoscopiques. A basse température, les molécules apparaissent comme
ayant un seul spin géant. La majorité des expériences sont consacrees a I’aimant moléculaire
Fe8. Les molécules de Fe8 portent un spin 10 et ont une interaction négligeable. Le systéme
Fe8 montre des effets tunnels résonants & basse température au-dessous de 0,4 K. A haute
température, au-dessus de 1K, Fe8 se comporte comme un systéme superparamagnétique.

Les expériences sont faites en utilisant des magnétométres a SQUID aux performances
uniques. Ces magnétométres permettent des mesures de haute sensibilité en champ fort,
jusqu’a 8 tesla, et aux trés basses températures (> 50mK). Nous avons mesuré |’aimantation
en fonction de la température et du champ et Ia susceptibilité en fonction de la fréquence et de
la température.

A haute température la courbe d’aimantation de Fe$ ne suit pas la fonction de
Brillouin d’un systéme paramagnétique simple, mais une fonction qui prend en compte la
barriére d’anisotropie. La constante de Curie de la susceptibilité en champ faible est plus
élevée que pour un systéme paramagnétique. Elle correspond également a la valeur que nous
avons calculée pour un systéme superparamagnétique. La partie imaginaire de la susceptibilité
satisfait au modele de Debye et le systéme est donc géré par un seul temps de relaxation. La
courbe de relaxation vers 1 K est exponenticlle, comme prévu pour un systéme régulier et
sans interaction. Le temps de relaxation a haute température suit la loi d’ Arrhenius avec une
hauteur de barriére de 24 K et un préfacteur 7 ~ 107 sec, bien plus grand que pour un spin
libre. Dans cette gamme de température, Fe8 relaxe donc par activation thermique. Nous
avons obtenu les mémes temps de relaxation pour un échantillon en poudre et un monocristal.

Au-dessous d’une température de 0,4 K la relaxation est indépendante de la
température. La courbe de relaxation est non-exponentielle, et bien décrite par une loi
exponentielle étirée. Le temps de relaxation varie fortement avec le champ externe. La
variation n’est pas monotone et présente un effet résonant : le temps de relaxation est plus
court & des valeurs de champ équidistantes, séparées par 2 kOe. Dans la premiére résonance,
le temps de relaxation a une valeur de 7~ 10* s et hors résonance une valeur de 10° 5. La
courbe d’hystérésis présente des sauts aux valeurs du champ résonant et I’aimantation reste
presque constante hors résonance. La premiére résonance a une largeur d’environ 100 Oe et la
deuxiéme résonance une largeur de 500 Oe. Comme dans le régime superparamagnétique,
nous avons mesuré les mémes temps de relaxation pour un échantillon en poudre et un
monocristal. Cependant nous avons observé d’influence de la forme d’un monocristal. Nous
avons fait des mesures sur des échantillons en forme allongée, sphérique et aplatie. La courbe
de relaxation varie avec la forme, mais les paramétres de I’exponentielle étirée ont presque la
méme valeur. Nous avons observé par contre que la position de la premiére résonance change
beaucoup avec la forme d’échantillon. Pour I’échantillon long, apres la saturation dans un
champ positif, la premiére résonance se trouve a une valeur de +80 Oe a +100 Oe.
L’échantillon sphérique a sa premiére résonance & +230 Oe et I’échantillon plat a une valeur
de +200 Oe, également aprés une saturation en champ positif.
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Nous avons démontré que les champs dipolaires entre les molécules ont une forte
influence sur la relaxation. Ces champs n’agissent pas comme une force entre les spins qui
alignerait les spins parallélement ou antiparallélement. Les champs dipolaires permettent ou
suppriment I’effet tunnel quantique dans les molécules. Dans Fe8 les états de spin sont bien
sépards et le systéme traverse par effet tunnel la barriére entre un état discret 4 un autre état
discret. L’effet tunnel est permis seulement si les deux états ont la méme énergie ou si le
décalage d’¢nergie est plus petit que 1’amplitude tunnel, Ayu.;. En présence d’un champ
magnétique les états de spin vont bouger et changer le décalage entre les états. Si ce décalage
est plus grand que Aumer, I"effet tunnel est supprimé et le spin est bloqué. Nous avons observé
une relaxation en racine carrée du temps pour le début de la relaxation, comme prévu par une
théorie qui prend en compte les effets de champ local.

Nous présentons un modele phénoménologique simple qui décrit bien la courbe de
relaxation sur 4 décades en temps. Dans ce modéle, nous supposons que la résonance
quantique d’une molécule est trés étroite, de 4 & 5 ordres de grandeur plus petite que la largeur
de la distribution du champ local. En conséquence, seulement une petite fraction de spins est
en résonance. La plupart des molécules sont hors résonance et ne peuvent pas participer 2 la
relaxation. Nous supposons que la distribution du champ local évolue pendant la relaxation,
Le nombre de molécules en résonance diminue au cours du temps avec pour effet que la
relaxation se ralentit. Pour cette raison, la courbe de relaxation ressemble 4 une fonction
exponentielle étirée. Une autre conséquence de cet effet dans les expériences, est que nous
n’observons pas le taux d’effet tunnel quantique 7, , mais un temps de relaxation effectif

Tupes - 1-€ Tapport entre le taux effectif de relaxation et le taux d’effet tunnel quantique

Tegectit | Tumner ~ O/ By 2 le méme ordre de grandeur que le rapport entre la largeur de Ia

distribution du champ local & et la résonance quantique d’une seule molécule A

tunnel "

O/ A, ~10* —10°. De cette fagon nous pouvons également comprendre pourquoi nous
observons dans les expériences une résonance avec une largeur de 100 Oe et plus.

Pour mieux comprendre 1’effet du champ local nous avons fait des calculs numériques,
Dans ceux-ci nous faisons une distinction entre le champ dipolaire et Ie champ local. Le
champ dipolaire est le champ magnétique créé par tous les spins dans un échantillon, et varie
de position a position et méme 4 I’intérieur d’une molécule. Le champ local est directement
li¢ au décalage d’énergie d’un spin géant. Ce champ est seulement défini par rapport 4 une
molécule et les positions de ses spins ioniques.

Nous avons calculé la distribution du champ local pour un échantillon dont tous les
spins sont paralléles, ce qui correspond a la distribution initiale d’une expérience de
relaxation. Ensuite nous avons étudié la distribution dans un cas ot les spins sont retournés de
maniére aléatoire. Nous observons une forte influence du résean triclinique sur la distribution
du champ local. Pour réaliser une simulation de la relaxation dans le régime quantique nous
utilisons une méthode de Monte-Carlo. L’effet tunnel quantique crée des corrélations
inhabituelles dans la configuration de spin. Autour de la résonance moléculaire, ces
corrélations changent la distribution du champ local. Dans cette région ils diminuent
"amplitude de la distribution (comparée a celle d’une distribution aléatoire) et encore moins
de molécules sont en résonance que dans un modéle statistique. Un spin qui tourne change le
champ local dans son environnement proche. Dans une certaine région le changement dans le
champ local est plus grand que la résonance moléculaire et les molécules de cette région sont
bloquées. Un autre spin qui tourne dans fa proximité d’une telle région va bloquer également
des spins voisins, mais dans une région en commun quelques molécules vont peut-étre se
débloquer. Donc le champ local ne détermine pas 1’orientation d’un spin, il permet ou
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supprime le retournement d’un spin par effet tunnel quantique. A la fin du mémoire nous
présentons une expérience qui montre clairement les effets de corrélations sur le champ local.

En résumé nous avons étudié un échantilion, Fe8, montrant clairement 1’effet tunnel
quantique résonant. Pour la premiére fois il a été possible d’étudier avec soin et de maniére
trés détaillée le comportement magnétique dans le régime quantique. Nous avons montré que
le champ dipolaire entre les molécules influence fortement la dynamique des spins. L’effet
tunnel quantique crée des corrélations inhabituelles dans un tel systeme. Nous croyons que
nos arguments sont trés généraux et s’appliquent également aux autres systémes tunnels
résonants, comme Mnl2ac.
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Annex 1

Al) Energy levels of Fe8

In this annex we given some technical details used to calculate the energy levels of the
Fe8-Hamiltonian and their field dependence. The energy level scheme is interesting in itself
and can be used to calculate thermodynamically properties such as the magnetization curve,
see annex 1I.

To calculate the energy levels of the spin states we have to diagonalize the
Hamiltonian. In the case of Fe8 the diagonalization can be done numerically. The Fe8
Hamiltonian reads

f1=-D§ + E(S‘f - §j)+ gityS.H . (1, Al)

The first term is the. anisotropy barrier, the second is due to the transverse anisotropy and
gives the tunneling term, and the last term gives the Zeemann energy shift due to a magnetic
field H. The parameters D and E have been first measured by EPR-measurement [Barra 96]
and later confirmed by inelastic neutron scattering [Caciuffo 98]. We used the values from the
EPR-measurement, D = 0.27K and E = 0.046K. Instead of using the transversal spin

components S, and S , We can express equation (1, Al) in terms of the spin raising and
lowering operator Si = S‘x +i8 ,- Thus

H =-DS2+ E12(8} +82)+ gupS.H. 2, Al)
If a spin S is in the state IS ; m) with m = -S, ..., +S then the z-component operator of the spin

acts as

A

STS, m) =
The raising/lowering spin operator gives
S,|S,m)=yS(S +1)—m(m+1)
and the square of this operator
§2|8,m) = VIS +1) = mm £ DIS(S +1) = (m £ ) (m £ 2)]

m"|S,m) (3, Al)

S,mtly. (4, AD

S,mt2).  (5,AD

Using these equations we can now write the Hamiltonian as a matrix in the Heisenberg
picture. The diagonal elements are given by
o, = —~Dm* + g, Hm
where m = —10, ..., +10. The raising and lowering spin operators give two off-diagonal lines
in the matrix and all the other elements are zero. We will write the matrix elements as H,

where the index i is over the rows and j over the columns. The off-diagonal elements are
placed where j+1=j-1and j~1=;+1. Their values are

¥, = E12:][S(S+ 1) = m(m+ DJS(S + 1)~ m(m—1)] (6, Al)

where m=i+1if i+1=j—1and m=i-1if i—1=j+1, respectively. Thus

¢, for i=j=m
H, =<y, for i—l=j+l=mori+l=j—-1l=m. ( 7, ATl)
0 else
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In a matrix form this looks like

P10
0

Yio

0 v
G 0 Vs

o . . 0
Ve

(8, Al)

The diagonalization of the matrix can in principle be solved analytically but it is a very
tedious task. We therefore preferred a numerical method to solve this problem and used the
eigenvalue finder of MATHEMATICA. The result is shown in figure [AL1].

energy (K]

H [kOe]

Figure AL1: Fe8 energy levels as function of the magnetic field.
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Annex I1

AIl) Magnetization curve of Fe8
The magnetization curve of a paramagnet at a temperature of 7 and in a small field H

obeys the Curie law
C

M(H,T)z-:—r—H (1, All)

where C is the Curie constant. If the orbital moment is zero then we need only take the spin §
into account and the Curie constant is given by C= N, g’ /3kS(S +1). g = 2 the g-factor of
the spin, £, the Bohr magneton, and & the Boltzman constant. Ny is the Avogadro’s number
and the Curie constant is expressed in units of emu/mole, but it may also be expressed as
emu/mass or emu/volume.

For high enough fields  a saturation effect will occur and the magnetization deviates
from the Curie law. Statistical thermodynamics tells us that the magnetization results from the
partition function

+38
Z(H,T)= )Y exp

m=—-§

{Em(H )) (2, AIl)
kT

where E_(H)are the energy level of a spin in a state m = =S, ...,+S in a magnetic field 4. The
magnetization A in the thermodynamic cquilibrium is given by
e )= wer L2 5
For a paramagnet of free spins the energy levels are
' E (H)=guzHm (4, All)
and the magnetization can be given analytically
where y = gu,SH/kT and

25+1 28 +1 1 y)
B,(y)= th ~ Lo 2 6, All
sO)="75 Co( 28 y) 25 (25 (6, AID

is the Brillouin function. For free electrons S = 1/2 this result simplifies further to
B,,(y)=tanh(y). (7, AlD

Note that so far in all case the magnetization is scaling with H / T.

This scaling no longer holds for superparamagnets. In the case of a uni-axial, quadratic

anisotropy barrier as in first approximation in Fe8 and Mn12ac the energy levels are
E, (Hy=-Dm® +gu,Hm (8, All)
where the height of the energy barrier is given by DS ?. The magnetization can by calculated
directly by equation (3, AI) which becomes now
+5 E (H)
i 3 s 550)

M(H,T) = NKT—2==5 KT/ (9, AL

g exp(——E’" (H))

m=-5 kT
We have calculated this magnetization curve and compare it to the Brillouin function and
more important to the measured data.

Including the off-diagonal, tunneling term the Hamiltonian of Fe8 reads
H=-D§+ Efz(ﬁf + Sf) — g, S H. (10, AID)
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First we have to calculate the energy levels E (H), see annex I, then we can simply use

equation (9, All) again and calculate the magnetization as a function of the field and the
temperature. The resulting magnetization curve deviates only slightly from the magnetization
curve where we have neglected the off-diagonal terms in the Hamiltonian, see the figures
[AIL1] to [AIL3].

If we want to fit these plots to a measured curve we have to take into account that the
external field is not the same as the field experienced by a molecule. We will discuss this in
detail in the following annex. For a fit we don’t have to take account every detail. Some
parameters can’t be given and to match these calculated curves to measured data it is
sufficient to assume that the internal field is proportional to the external field H.,, and the
magnetization of the sample A hence

H=H_ - NM (11, AIl)
where ¥ is the demagnetization factor, see the presentation of the experimental results on Fe8
in chapter IV .2.1.

1
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0.2 - Brillouin function .
i — Superparamagnet
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0
0 2000 4000 6000 8000 10000
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Figure ATL1: Calculated magnetization curve of Fe8 at 4.2K.
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Figure AIL2: Calculated magnetization curve of Fe8 at 1K.
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Figure AIL3: Calculated magnetization curve of Fe8 at 0.1K.
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Comparison of the susceptibility, dM/dH at the origin (H = 0) for different temperatures and

different models:
Temperature Brillouin fn. Superparamagnet Incl. tunneling terms
4.2K 0.000117 0.000282 0.000279
1K 0.000487 0.00128 0.00124
0.1K 0.00482 0.0123 0.0113

Table AIL1: Susceptibility, dM/dH for small fields. The units are M/M,,/K.
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Annex 111

AIIl) Demagnetization field

The demagnetization field Hp is an effect of uncompensated magnetic dipole moments
on the surface of a sample. These dipole moments give rise to a magnetic field, the
demagnetization field, in the opposite direction of the dipole moments, see figure [AIIL.1]. For
simple sample shapes as a ellipsoid, a long cylinder, and a flat disk the demagnetization field
is homogeneous and proportional to the magnetization A of the sample Hp = —NM where N is
the demagnetization factor, Here, we only take one component of the magnetic field into
account (along the axis of the cylinder or perpendicular to the disk). In general the
demagnetization factor is a tensor N thus H, ==NM. Tt can be shown that the coordinate
system can always be chosen in such a way that the tensor has only diagonal elements.

N, 0 0
N=| 0 N, 0] LAl
0 0 N,

The trace of the matrix is constant and the sum of the diagonal clements is N, + N, + N, = 47n
in cgs units and N,+N,+N,=1 in SI units. For a sphere the diagonal elements are
N,+N,+N,=4n/3, for a long cylinder N =N, =27, N, = 0, and for the flat disk
N,=N,=0, N, =4m. The demagnetization elements for a ellipsoid can be given
analytically in the form of an integral. Say, the ellipsoid has the diameters ax, gy, a; along its
three axes. The demagnetization factors in SI units along these axes are

A% ds (1, ATID)

N‘ = XY %
1 2 0(S+a,.2),\/(s-i—af)(s+a§)(s+azz)

where the index i stands for x, , ot z [Stratton 61]. In cgs units the demagnetization factors
are 47N,.

Figure AIIL1: Demagnetization field of an unformed magnetized eliipsoid.
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For any other sample shape the demagnetization field is inhomogeneous and will vary
spatially, Formally we could write H » =—N(¥)M but we cannot give any expression for the
demagnetization factors N,(7). What we can do is to calculate the magnetic field within a
sample numerically. For this calculation we place the dipole moments 7 on the sites of the 3-
dimensional lattice and calculate the magnetic field due to all dipole moments in the sample
as we have done for Fe$.

Lorentz lattice
sphere

Figure AIIL.2: Lorentz sphere construction: Within an arbitrary sample shape a spherical sub-volume is replaced
by point dipoles on a crystal lattice.

The numerical calculation can only be done over an relatively small sub-volume of a
real sample that contains a few thousand magnetic moments. The overall magnetic field is
give by

IEI = I;I + ﬁl‘nner '

outer

(2, Al

We thus have to distinguish an outer component H__ where we can for simplicity assume

Duier

that the magnetization is uniformly distributed and an inner component H, that includes the

mner:

calculated field value. The outer component is simply the sum of a facultative external field

H,,, . and the demagnetization field H » =~N(¥)M thus
H,.=H, —-NHM. (3,Al
To evaluate the inner component H,, . we use the technique of a Lorentz sphere. That means
we subtract a small uniformly magnetized sphere, the Lorentz sphere, from the interior of the
sample and replace it with an array of dipole moments on a crystal lattice, see the schema in
figure [AIIL.2}. The field of the Lorentz sphere is H,,, =+47/3M. The factor 4r/3 is the
demagnetization factor of a sphere but this time with an opposite sign since we are subtracting
the sphere and leave a cavity in the sample. The numerically calculated field of the moments

in the small sphere is H,,_. Thus the inner field is given by
g =i 4 A

inter 3 near
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Summing these components up we get the expression for the magnetic field inside a sample

. 4 e =
d=H_ + (-35 - N(r)) M+ 8, (5 Al

Recall that this expression is only true if the near field is calculated for a spherical sub-
volume, in any other cases the numerically calculated field itself will include a
inhomogeneous demagnetization field! In the case of a spherical sample the expression in the

brackets is zero and in the absent of an external field the magnetic field inside the sample will
only be determined by possible lattice effects in H . For example the near field Hyeor of 2

hear

simple cubic (sc) lattice is zero. A somehow simplified argument goes as follows: The two
next neighbors in z-direction each give a field of /7 = +2m/r’ while the four next neighbors in
x- and y-direction each give a field of H= —m/r®. Thus the field of the six next neighbors of a
molecule sum up to a zero field. A more elaborate explanation is given e.g. in [Jackson 75].
Thus even though the demagnetization field is non-zero (H =4/ 3M) the magnetic field
experienced by the molecule inside the sample is zero.

We have calculated that the triclinic lattice of Fe8 give a easy axis-component of the
near field of Hyear = +122 gauss if all spins are parallel. This value is changing if some spins
are turning. We also discussed that while the spins are turning a broadening of the local field
distribution occurs. Therefore is the near field over the sample not only varying with the

magnetization but also with place H__(M,#). This function is not known the only thing we

near

can say is that the spatial variation is small for M near 1 and (Hmr)% not zero. For M = 0 the

spatial variation is large and (Hmr>F =0.
We can now introduce some major simplifications. We might neglect any spatial distribution
and assume that the near field is also proportional to the magnetization

H_ _(My=N__M. (6,Alll)

near near

Then the whole demagnetization effects reduces to the simple formula
H=H_ -N__M. (7, All)

extern tatal

where of course all the complication is hidden in the total demagnetization factor

N =N-2T_N (8, ATII)

total 3 near”’

We use this expression for simplicity equation (7,AIll) in the analysis in the experiments. It is
now clear that even for a spherical sample the demagnetization field might differ from zero if
the lattice is not simple cubic.
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Annex IV

AIV) Statistical theory of the dipole field distribution

In this chapter we will review some results on statistical properties of the local field
distribution. We discuss what kind of shape the local field distribution will have for a
increasing number of randomly placed magnetic moments. We use these results in our
situation, i.e. the number of the spins in the sample is fixed and during the course of a
relaxation the spins are changing their orientation.

Randomly placed spins

It has been pointed out, that the dipole field distribution for randomly placed spins in
the dilute limit is Lorentzian [Anderson 51, Abragam 70] and that for a larger number of spins
the dipole field distribution becomes Gaussian. A discussion of the crossover from a
Lorentzian to a Gaussian distribution shape is discussed in [Berkov 96]. In this publication the
dipole field distribution is analyzed for a system of aligned spins and randomly orientated
spins. In this model, a number N of uniformly magnetized spheres of a volume V,, is
randomly placed in the total volume V of the system. The parameter for the transition of the
distribution shape is 7 = NV, / V. This is the ratio between the volume occupied by the

magnetic spheres NV, and the volume of the total system V.

— Dilute limit
If the number of spins is small the dipole field distribution p(H) is Lorentzian
Tz
PL(H)—(H_H)2+F2 (1, AIV)
where H is the field value, u the center of the distribution, and I"the width of the distribution.
Berkov found that the distribution is Lorentzian as long as 7 < 0.03. The width of the
distribution changes linearly with 1
r=rmn, (2, AIV)
see also [Anderson 51].

— Large number of spins
For a larger number of spins 1 2 0.2 the dipole field distribution becomes Gaussian

1 (H- @)’
m= exp| ——>— 2, AlV
P (H) Tono p[ 2757 ( )
where i is the center of the distribution and ¢ is the width, i.e. o* is the variance of the dipole
field values. For the Gaussian distribution the variance changes linearly with the number of
spins

o’=o,m. (3,AlV)

Dipole field distribution in a paramagnet

In the systems we are studying the number of spins are fixed and we cannot apply
these results directly. We found that the dipole fields have a tremendous effect on the
quantum tunneling and we are therefore mainly interested in the dipole distribution at low
temperatures. For Fe8 the quantum regime starts at a temperature of 0.4K. Since the level
spacing between the spin states m = +10 and m = %9 is about 5K we can assume that only the
lowest energy states m = £10 are occupied. The system is Ising-like in this temperature range.
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If we saturate the sample in a high positive field, all are spins are aligned and pointing up. We
will call this the initial distribution. To discuss this system we introduce the notation;

*ny+  the fraction of up spins

* . the fraction of down spins.
These variables are so normalize that n++n.=1 and M =n.—n_ is the normalized
magnetization of the sample. The variables ». and »n_ range from 0 to +1. The above
mentioned parameter 7 is equivalent to 1-M, i.e. = 2n_. For the further discussion we

itroduce the following definitions:
* Pua(H)  the overall dipole field distribution for all spins

« py(H) the normalized dipole field distribution of only the up spins
0y (H) the normalized dipole field distribution of only the down spins
The distribution are normalized such that
[Poa(H) dH=1 (4, AIV)
and
j PE(H) dH =1 (5, AIV)
hence
P (H) =1 oy (H) +1_py(H). (6, AIV)
For the initial distribution, all spins up, p,,.(H)= py(H). In the ideal case of a spherical
sample with a simple cubic lattice and all spins up the initial dipole field distribution is given
b
' Piva™" (H) = 8CH) (7, AIV)
where &(H) is the Dirac delta-function. In general the sample can have a non-homogeneous
demagnetization field and depending of the crystal lattice the center g, of the initial

distribution may be different from zero, i.e. §(H)— 6(H — y,) in equation (7, AIV).

If the spins are flipped randomly all three dipole field distribution should be
equivalent:
Proat () = oy (H) = p, (H). (8, AIV)
We can now argue that the dipole field distribution p, (H) will change in a spherical sample
with the number of turned spin n_ as discussed above for randomly placed spins. At the
beginning the p;, (H)-distribution contains no spins. If we flip spins by random the number of
spins in the p, (H)-distribution will increase. We thus expect that the o, ( H)-distribution will

be Lorentzian if only a few spins are turned and will become Gaussian if a larger number of
spins are turned.

If the lattice is not simple cubic the dipole field distribution even for the initial state
will be centered at a value different from zero u, # 0. Further more, the center of the

distribution will shift with the magnetization field as
u=pM.  (9,AIV)

Including the magnetization M as a parameter the dipole field distribution will have the form

- — Dilute [imit
' MY/ =

10, ATV
(H- (M)’ +T*(M) ( )

p (H)=

with

164



p(M) = pM (11, ALV}
and
T(M)=T,(1-M). (12, AIV)

— Many spins turned

o (H) = JélEM ex [_%J (13, ATV)
with
M)y =u,M (14, ALV)
and

o (M=o (1-M). (15, AIV)

The linear dependence of ¢*(M) on M (equation 15, AV) breaks down as the magnetization
approaches zero. If 50% of the spins are turned the width of the distribution will have a
maximum and if more spins are turned the width will decrease. This comes because for more
than 50% of turned spins the order in the system is increasing and if all spins are turned there
will be no distribution at all. In this case the pj(H)-distribution will for a spherical sample be
a Dirac delta-function as mention in equation (7, AIV) for the initial case. The only difference
might be that the delta-function will be shifted by —uo for a lattice that is not simple cubic. We
therefore expect that the width of the Gaussian distribution will gradually change from
equation (15, AIV) if we approach M = 0 and will becomes inverse for a negative
magnetization, i.e. more than 50% of spins are turned, see figure [V.1.3.6] in the chapter
[V.1.3] on the numerical calculations.
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Annex V

AV) Non-Exponential Relaxation

In a perfect paramagnet the relaxation obeys the Debye-model and the relaxation curve
is single exponential
M(t)= M, exp(—t/T). (1, AV)
In the presence of disorder or interactions the relaxation behavior will change. To better fit the
data, phenomenological models include an additional parameter (in fact often two parameters)
exp(—1/7) — aexp(—(t/7)"). 2, AV)

This relaxation law is call the Kohlrausch function or a stretched exponential function. For
short times an expansion of the stretched exponential function

tim exp(—(t/7)’)=1- (/) (3, AV)

can fit the data often only with a change in the parameter . Thus the relaxation starts off as a
power law for short times and change to a relaxation on a roughly logarithmic scale for longer
times. Taking this into account, the original exponential function is often replaced by

exp(~1/7) = ar“exp(—(t/ 7). (4, AV)
In general the parameters are temperature dependent (a(T), B(T)).

A stretched exponential behavior is ubiquitous in physics and many phenomenological
theories try to explain its appearance. This kind of behavior was extensively studied in the
context of spin glasses, e.g. [Ogielski 85]. One major shortcoming of these phenomenological
relaxation laws is that the underlying physical process remains unclear. One can imagine that
such a complicated function as in equation (4, AV) with 2 extra parameters will fit a large
variety of relaxation curves. Many phenomenological theories exists that try to give a
justification for these laws. Some theories are deterministic while others use statistical
arguments. In the following we will shortly review some theories on non-exponential
relaxation. In these theories a distribution of relaxation times of subsystems in the sample is a
priori assumed. In detail we might also distinguish between theories in which these relaxation
times act in parallel, thus the many subsystem are essentially independent from each other,
and theories where the relaxation times act in a serial manner, i.¢. the relaxation times depend
on certain conditions that evolve during the course of the relaxation.

In a disordered system each subsystem might have a different relaxation time and over
the whole sample a certain distribution of relaxation times is present p(t). In this case the

bulk relaxation is given by
M@)=M, [ p(r)exp(~t/T) dr. (5, AV)
0

Often a rather broad distribution is assumed and over a certain time range a logarithmic
relaxation can describe sufficiently the measured data

MO _ g const. (6, AV)
dint

where 7, is an additional parameter that determines the time scale.

A more specific assumption is to postulate a gaussian g(A) distribution of the barrier heights
A in an ensemble of superparamagnets.
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If the Arrhenius law is valid

T(T)=1,exp(A/T) (7,AV)
this distribution corresponds to a gaussian distribution on the logarithm of the relaxation times
g(nt). If we integrate equation (5, AIV) the exponential function in the integrand

“exp(~t/7)” result in a sharp cut-off in the integration range thus
In?

M(t)~ [g(nT) dint (8, AV)
\]
which results in an error function on the Ins-scale that is for most real cases indistinguishable
from a stretched exponential relaxation.

A class of theories studying serial processes in the relaxation behavior establish a
hierarchy of subsystems. Each subsystem has its own relaxation time that depends on the
relaxation time of a subsystem that is one step higher in the hierarchy. The spin degrees of
freedom on each level # in the hicrarchy is

p.=N,/N (9,AV)
and the relaxation time for each level is given by

7., =2%7. (10, AV)
In [Palmer 84] a variety of assumptions on p, and g, have been discussed, The authors found
a stretched exponential behavior for a geometric series in p,,, = p,/A and a power law
M, =t ” with p = 1. These postulates are deterministic and in contrast Souletie and
Castaing following Montroll, e.g. [Montroll 84, Souletie 94] use a statistical argument.
Equation (10, AV) can be expressed as

Inz,, => p,In2+Inz,. (11, AV)

They argue that one can assume a random distribution of the exponents g , thus we get a
gaussian distribution on the logarithm of the relaxation times g(lnz, ). We can thus return to

the arguments used for the equation (8, AV) and find again a stretched exponential relaxation.
A consequence of this approach is that a relationship Int ~ 1/ is estavlished, see figure
[1V.2.2.9].

A somehow different theory on stretched exponential relaxation in a ordered system is
given by Lottis and Dahlberg [Lottis 91, Dahlberg 94]. They assume an ordered system of
non-interacting superparamagnets. The relaxation rate of these superparamagnets obey the
Arrhenius law, equation (7, AV), where they explicitly take the field dependence into account
via the energy barrier A(H). In extension to the Debye model, flipping of the magnetic

moment in both directions is allowed, i.e. up to down with a probability p.(H, T) and down to

up p_(H, T), thus
an ‘[M_lexp(~A+(H)/T)— =M

exp(—A_(H)/T)} (12, AV)

where A, (H) is the field dependence of the energy barrier due to the Stoner- Wohlfarth model
A (H)=A1F(H/H)?). (13,AV)

Hp is the switching field of the energy barrier. They argue that the demagnetization field

H, =NM is continuously diminishing during the course of the relaxation and will in

consequence change the barrier height at the same time. They solved the equation (12, AV)
numerically and found that the relaxation curve resembles very much a stretched exponential
function.
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Quantum Tunneling of the Magnetization in the Molecular Magnet Fe8

We have studied quanturn tunneling of the magnetization in molecular magnets
at very low temperatures. Our experiments give clear evidence of resonant quantum
tunneling in the iron-ion compound Fe8. This system can be thought of as an ensemble
of identical, iso-oriented nanomagnets each with a net spin of § = 10.

Measurements of the relaxation of the magnetization were made using unique
SQUID-magnetometers that can operate in strong fields (up to 8 tesla) and at
temperatures down to 50mK. At high temperatures, above 1K, the Fe8-system behaves
as a superparamagnet and relaxes via thermal activation over an anisotropy barrier of
approximately 24K. Below 0.4K the relaxation is temperature independent indicating
that the giant molecular spin tunnels through the anisotropy barrier. The relaxation
time varies strongly with the external magnetic field and shows resonant effects at
equidistant field values. In this quantum regime the relaxation curve is non-
exponential and can be well fit by a streiched exponential. However, the very
beginning of the relaxation follows a square root behavior.

We give evidence that the dipole fields between the molecular spins strongly
influence the relaxation behavior. The dipole fields do not act like a force between the
molecules but permit or suppress quantum tunneling by shifting molecules inio or
away from resonance. We present a simple phenomenological model that explains the
stretched exponential relaxation behavior. The model is based on a very narrow
tunneling resonance along with an evolving local field distribution during the course
of a relaxation. ‘

In addition, we calculated numerically the initial local field distribution and its
time evolution. Comparison with measurements of the distribution of relaxation times
and with Monte-Carlo simulation of the quantum relaxation indicates that unusual
correlations develop between spins.







Résumé

Nous avons étudi€ les retournements d’aimantation par effet tunnel quantique
dans des aimants moléculaires. Nos expériences montrent clairement 1’effet tunnel
quantique dans 1’aimant moléculaire Fe8. Ce systdme se¢ compose d’un ensemble
d’aimants nanoscopiques identiques et orientés paralidlement. Chacune des molécules
porte un spin S = 10. , _

Les mesures de relaxation sont faites en utilisant des magnétomstres 4 SQUID
aux performances uniques. Ces magnétometres permettent des mesures de haute
sensibilité en champ fort, jusqu’a 8 tesla, et aux trés basses températures (> 50 mK). A
haute température le systéme Fe8 se comporte. comme un systéme
superparamagnétique qui relaxe par activation thermique au-dessus d’une barriére de
24 K. Au-dessous de 0,4 K la relaxation est indépendante de la température ce qui est
le signe d’un effet tunnel quantique du spin moléculaire 2 travers la barriere. Le temps
de relaxation varie fortement avec le champ externe et monire des effets résonants.
Dans le régime quantique la courbe de relaxation est non-exponentielle et bien décrite
par une exponentielle étirée. Le début de la courbe de relaxation suit une loi en racine
- carrée du temps. .

Nous montrons que le champ-dipolaire entre les molécules a une forte
influence sur la relaxation mais le champ dipolaire n’agit pas comme une force : il
permet ou empéche Ieffet tunnel quantique dans une molécule. Nous présentons un
modele phénoménologique simple qui explique pourquoi la courbe de relaxation
ressemble a une exponentielle étirée. Dans ce modéle nous supposons que chaque
molécule a une résonance trés étroite et que la distribution du champ local évolue
pendant la relaxation. . | . .

De plus, nous présentons un calcul numérique sur 1’évolution de la distribution
du champ local. Un calcul de Monte-Carlo avec des distributions réalistes montre lui
aussi D’existence de corrélations inhabituelles en accord qualitatif avec nos
observations.

Mots-clés
aimants moléculaires Fe8
magnétisme a trés basse température . physique mésoscopique
effet tunnel d’aimantation  Trelaxation non-exponentielle

effet tunnel résonant ‘ champ interne







